

NAVAL

POSTGRADUATE
SCHOOL

MONTEREY, CALIFORNIA

THESIS

Approved for public release; distribution is unlimited

FINDING BENT FUNCTIONS USING GENETIC
ALGORITHMS

by

Stuart W. Schneider

September 2009

 Thesis Co-Advisors: Jon T. Butler
 Pantelimon Stanica

 i

REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704–0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instruction,
searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send
comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to
Washington headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA
22202–4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704–0188) Washington DC 20503.
1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
September 2009

3. REPORT TYPE AND DATES COVERED
Master’s Thesis

4. TITLE AND SUBTITLE
Finding Bent Functions Using Genetic Algorithms

6. AUTHOR(S) Stuart W. Schneider

5. FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943–5000

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING /MONITORING AGENCY NAME(S) AND ADDRESS(ES)
N/A

10. SPONSORING/MONITORING
 AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the official policy
or position of the Department of Defense or the U.S. Government.
12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited

12b. DISTRIBUTION CODE

13. ABSTRACT (maximum 200 words)

In this thesis, a generic genetic algorithm (GA) is presented that is implemented on a reconfigurable
computer. Our GA is implemented such that many problems can be solved by simply adapting the problem to the
GA. For example, part of this process involves the customization of the fitness function of the given problem to the
GA. The size of the problem is limited by the capacity of a field programmable gate array that is part of the
reconfigurable computer. We apply this to bent functions, which are Boolean functions that are well suited for
cryptographical applications and are extremely rare. Experimental results show the effectiveness of this technique.
Different methods are used to discover bent functions. These methods take advantage of the properties of bent
functions to reduce the total search space. This allows a brute force search to be conducted on the reduced search
space to locate the set of bent functions in that search space. Two different methods are used to reduce the search
space. The first is through rotationally symmetric functions, which reduces the number of bent function that can be
found, while the second is by the degree of the function, which locates all bent functions.

15. NUMBER OF
PAGES

200

14. SUBJECT TERMS Genetic Algorithm, Bent Functions, Reconfigurable Computer, Field
Programmable Gate Array (FPGA), Cryptology

16. PRICE CODE

17. SECURITY
CLASSIFICATION OF
REPORT

Unclassified

18. SECURITY
CLASSIFICATION OF THIS
PAGE

Unclassified

19. SECURITY
CLASSIFICATION OF
ABSTRACT

Unclassified

20. LIMITATION OF
ABSTRACT

UU
NSN 7540–01–280–5500 Standard Form 298 (Rev. 2–89)
 Prescribed by ANSI Std. 239–18

 ii

THIS PAGE INTENTIONALLY LEFT BLANK

 iii

Approved for public release; distribution is unlimited

FINDING BENT FUNCTIONS USING GENETIC ALGORITHMS

Stuart W. Schneider
Lieutenant, United States Navy

B.S.EE and B.S.CS, United States Naval Academy, 2000

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN ELECTRICAL ENGINEERING

from the

NAVAL POSTGRADUATE SCHOOL
September 2009

Author: Stuart W. Schneider

Approved by: Jon T. Butler
Thesis Co-Advisor

Pantelimon Stanica
Thesis Co-Advisor

Jeffrey B. Knorr
Chairman, Department of Electrical and Computer Engineering

 iv

THIS PAGE INTENTIONALLY LEFT BLANK

 v

ABSTRACT

In this thesis, a generic genetic algorithm (GA) is presented that is implemented

on a reconfigurable computer. Our GA is implemented such that many problems can be

solved by simply adapting the problem to the GA. For example, part of this process

involves the customization of the fitness function of the given problem to the GA. The

size of the problem is limited by the capacity of a field programmable gate array that is

part of the reconfigurable computer. We apply this to bent functions, which are Boolean

functions that are well suited for cryptographical applications and are extremely rare.

Experimental results show the effectiveness of this technique. Different methods are

used to discover bent functions. These methods take advantage of the properties of bent

functions to reduce the total search space. This allows a brute force search to be

conducted on the reduced search space to locate the set of bent functions in that search

space. Two different methods are used to reduce the search space. The first is through

rotationally symmetric functions, which reduces the number of bent function that can be

found, while the second is by the degree of the function, which locates all bent functions.

 vi

THIS PAGE INTENTIONALLY LEFT BLANK

 vii

TABLE OF CONTENTS

I. INTRODUCTION..1
A. CRYPTOLOGY APPLICATIONS..1
B. GENETIC ALGORITHMS (GA) ..1
C. RECONFIGURABLE COMPUTING ON THE SRC-62
D. GOAL OF THIS THESIS ...3
E. THESIS ORGANIZATION..3

II. BENT FUNCTIONS ..5
A. BACKGROUND ..5

1. Definitions...5
a. Linear or Affine Function ..5
b. Nonlinearity (NL)..5
c. Bent Function ...5
d. A-class..5
e. Truth Table (TT) ...6
f. Algebraic Normal Form (ANF)..6
g. Degree..6
h. Co-functions ..6

2. Properties..6
a. Rotationally Symmetric (ROTS) Functions6
b. Maximum Nonlinearity ..7
c. Weight..7
d. Summary..7

B. REPRESENTATIONS ..7
1. Truth Table...7
2. Algebraic Normal Form ..8
3. Transeunt Triangle ..9

C. BENT FUNCTION DISCOVERY ...11
1. General Case...12
2. Brute Force ...12
3. ROTS...12
4. By Degree..14
5. Complement Optimization..14

D. SUMMARY ..15

III. GENETIC ALGORITHMS ..17
A. BACKGROUND ..17

1. Definitions...17
a. Chromosome, Element or Member ..17
b. Gene...17
c. Value..17
d. Fitness Function ...18
e. Fitness Value...18

 viii

f. Population ...18
g. Generation...18
h. Survival of the Fittest..18
i. Crossover ...18
j. Selection ..19
k. Mutation ..19
l. String Generation..19

2. Example of a Genetic Algorithm ..20
3. Advanced Operations ..23

a. Selection Methods ...23
b. Elitism..23
c. Selective Crossover..24

B. IMPLEMENTATION ON THE SRC-6...24
1. Generation Creation ..25

a. Generation Creation ...25
b. Compare and Clear Unit...26
c. Half-life ...27
d. Order 67...27
e. String Generation..28
f. Numerical Representation ..30
g. Fitness Function ...31

2. Sorting...31
3. Crossover and Mutation..33

a. ROM Address Control...33
b. Crossover ...34
c. Mutation ..39

C. ADVANCED IMPLEMENTATION ISSUES...40
1. Circuit Reutilization ..40
2. Random Access to ROMs..44

D. SUMMARY ..44

IV. BENT FUNCTION DISCOVERY ...45
A. OBSERVATIONS..45

1. Co-function Repetition ..45
2. Index Runs..45

B. BITSTUFFING ..60
1. The Ones Hypothesis ...61
2. Execution of a GA on 6n = ..64

C. ROTS SEED ON 4n = ..78
D. BY DEGREE ON 6n = ...81
E. ROTS ON 8n = ..82
F. SUMMARY ..84

V. SUMMARY ..85
A. BENT FUNCTIONS ..85
B. GENETIC ALGORITMS ...85
C. WHY RECONFIGURABLE COMPUTING..86

 ix

D. MEETING GOALS ...88
E. FUTURE WORK...88

1 ROTS Seed..89
2. By Bitstuffing on 10n = ..90
3. Rework on 6n = ..91
4. More Efficient Use of Memory Transfers..91
5. Calculators..91

APPENDIX A. STATEFUL MACROS SRC-6 ...93

APPENDIX B. SRC-6 LESSONS LEARNED...95
A. MACROS IN A LOOP ..95
B. TIMER ACCESS ...95
C. MAKEFILE OPTIONS...96

APPENDIX C. AUXILIARY PROGRAMS ..97
A. INFOER..97
B. CODER ...97
C. VERILOG GENERATOR..97

APPENDIX D. GA CODE...99

LIST OF REFERENCES..177

INITIAL DISTRIBUTION LIST ...179

 x

THIS PAGE INTENTIONALLY LEFT BLANK

 xi

LIST OF FIGURES

Figure 1 SRC-6 data flow path...2
Figure 2 Transeunt triangle conversion for 2x to 2 1x ⊕ ...10
Figure 3 Transeunt triangle for 1 2 3x x x⊕ to 1 3 2 3 1 2 3x x x x x x x+ +10
Figure 4 Transeunt triangle for 2 1x ⊕ to 2x ..11
Figure 5 Truth table simplification...11
Figure 6 General case nonlinearity calculation ..12
Figure 7 ROTS nonlinearity calculation ..13
Figure 8 Nonlinearity calculation by degree ..14
Figure 9 GA algorithm ...20
Figure 10 GA implementation organization...25
Figure 11 Generation creation..26
Figure 12 Half-life circuit...27
Figure 13 Order 67 ...28
Figure 14 General case LFSR ..28
Figure 15 General case LFSR Verilog code...29
Figure 16 LFSR instantiation code...30
Figure 17 Fitness function flowchart..31
Figure 18 16 element Batcher sort, From [9] ...32
Figure 19 Swapping element for sorting ..33
Figure 20 ROM address control ...34
Figure 21 Crossover module ..36
Figure 22 Crossover unit ..37
Figure 23 1 bit crossover circuit...38
Figure 24 Mutation ROM...40
Figure 25 Circuit reutilization ..42
Figure 26 Reutilization state machine ..43
Figure 27 CRC circuit ..44
Figure 28 IA bent functions, Map A ..50
Figure 29 IA groups, Map A ..50
Figure 30 IA bent functions, Map B...51
Figure 31 IA groups, Map B ..51
Figure 32 IA bent functions, Map C...52
Figure 33 IA groups, Map C ..53
Figure 34 IA bent functions, Map D ..54
Figure 35 IA groups, Map D ..54
Figure 36 IA bent functions, Random Map..55
Figure 37 IA groups, Random Map..56
Figure 38 Bent function distribution, Map A...58
Figure 39 Bent function distribution Map B ..58
Figure 40 Bent function distribution, Map C ...59
Figure 41 Bent function distribution, Map D...59

 xii

Figure 42 Bent function distribution, Random Map ..60
Figure 43 Unique bent functions ..66
Figure 44 Chromosomes yielding bent functions...66
Figure 45 Percent fit versus minimum fitness..67
Figure 46 Yield versus minimum fitness ...68
Figure 47 Effect on number of unique functions due to changing the crossover point ...69
Figure 48 Effect on number of chromosomes yielding bent functions due to changing

crossover point ...70
Figure 49 Percent versus minimum fitness for a changing crosscode71
Figure 50 Yield versus minimum fitness for a changing crosscode.................................72
Figure 51 Unique bent functions versus changing generations..73
Figure 52 Chromosomes yielding bent functions versus changing generations74
Figure 53 Percent fit versus number of generations...75
Figure 54 Yield versus number of generations ..75
Figure 55 Fit chromosomes due to crossover...77
Figure 56 Nonlinearity, 4n = ..80
Figure 57 ROTS nonlinearity, n=4...80
Figure 58 Nonlinearity by degree, 6n = ...81
Figure 59 ROTS nonlinearity, 6n = ..82
Figure 60 ROTS nonlinearity distribution, 8n = ...84
Figure 61 Speed advantage of reconfigurable computing..87
Figure 62 Generations per CPU clock cycle ..88
Figure 63 Stateful macro timing diagram, From [15] ..94

 xiii

LIST OF TABLES

Table 1. Bent functions properties by number of variables ...7
Table 2. Truth table..8
Table 3. ANF table...9
Table 4. ROTS mapping ..13
Table 5. Start of 1st generation, From [4]...21
Table 6. Start of 2nd generation, From [4]..22
Table 7. After survival of the fittest, 2nd generation, From [4]22
Table 8. Chromosome format ..30
Table 9. FPGA utilization ..41
Table 10. Degree mapping, 6n = , Map A, part 1 ...46
Table 11. Degree mapping, 6n = , Map A, part2 ..46
Table 12. Degree mapping, 6n = , Map B, part 1 ...46
Table 13. Degree mapping, 6n = , Map B, part 2 ...47
Table 14. Degree mapping, 6n = , Map C, part 1 ...47
Table 15. Degree mapping, 6n = , Map C, part 2 ...47
Table 16. Degree mapping, 6n = , Map D, part 1 ...47
Table 17. Degree mapping, 6n = , Map D, part 2 ...47
Table 18. Degree mapping, 6n = , Random Map, part 1...47
Table 19. Degree mapping, 6n = , Random Map, part 2...47
Table 20. Frequency of group length in all partitions, Map A, 6n =51
Table 21. Frequency of group length in all partitions, Map B, 6n =52
Table 22. Frequency of group length in all partitions, Map C, 6n =53
Table 23. Frequency of group length in all partitions, Map D, 6n =55
Table 24. Frequency of group length in all partitions, Random Map, 6n =56
Table 25. IA concentration on 6n = ...57
Table 26. Bent function standard deviation per partition...60
Table 27. ROTS bent functions on 4n = ..61
Table 28. RSI histogram, n=4 ..63
Table 29. RSI functions with 6 ones ..64
Table 30. Bent function scarcity, After [8] ..85
Table 31. Place and route and mapping options ..96

 xiv

THIS PAGE INTENTIONALLY LEFT BLANK

 xv

EXECUTIVE SUMMARY

In this thesis, several methods are shown to locate bent functions. Bent functions

are well suited for cryptographical applications, such as in the substitution box in the

DES encryption standard, or the Grain-128 cipher [7]. To the best of our knowledge, this

is the first time that a reconfigurable computer has been used to locate bent functions on

more than six variables. Due to the repetitive nature of an algorithm needed to determine

if a function is bent, reconfigurable computers are ideally suited to locate them,

especially when compared to a general purpose computer.

As a result of this thesis, the Naval Postgraduate School (NPS) now has

5,425,430,528 6-variable bent functions, and 1,933,312 8-variable ROTS bent functions

for use in additional thesis and research work. Additionally, calculators have been

created to allow a nonlinearity calculation to be made on 8- and 10-variable functions.

This was not previously possible at NPS due to a lack of memory error that occurs when

attempting to complete the nonlinearity calculation using a previous instantiation of the

algorithm.

Multiple ways were examined to locate bent functions. Since there is not enough

time to conduct a brute force search of all functions on more than four variables, three

different means were used to restrict the search space to locate bent functions. The first

was by examining rotationally symmetric (ROTS) functions. The second method was to

search for them according to the degree of the function as revealed by its algebraic

normal form. This is accomplished through sequentially enumerating all of the functions

according to their degree through an index. This method revealed an interesting fact that

bent functions commonly occur with consecutive indices. Next, a genetic algorithm was

used to create a sieve to locate ROTS bent functions. These results show that, through a

well-designed chromosome, fitness function, crossover point and minimum fitness value,

the ability to locate bent functions is drastically increased. Finally, a non-traditional

approach towards GAs is taken to identify bent functions on 4 variables using other 4

variable bent functions.

 xvi

THIS PAGE INTENTIONALLY LEFT BLANK

 xvii

ACKNOWLEDGMENTS

First, I would like to thank LT Jennifer Shafer for explaining the mapping on the

transeunt triangle. I would next like to thank my thesis advisors Dr. Jon Butler and Dr.

Pantelimon Stanica for all of their guidance and help in making this thesis a reality. I

would also like to thank my lovely wife Naoko for all of her patience and long suffering

as I worked late into the night. Finally, I would like to thank my Lord and Savior, Jesus

the Christ, for all of His help, guidance, and inspiration.

 xviii

THIS PAGE INTENTIONALLY LEFT BLANK

 1

I. INTRODUCTION

A. CRYPTOLOGY APPLICATIONS

Two of the key aspects of a cryptographic system are confusion and diffusion

[14], [10]. Diffusion is the process by which repetitive information is “dissipated” over

an entire message. A simple case of confusion would be to replace one letter, ‘E’, with

another letter, ‘K’. This method does little to improve the secrecy of the message since

the frequency graph of the letters has not changed. In order to make this method more

practical, several substitutions must be made [14].

In a paper frequently described as “small” and “beautiful,” Rothaus introduces a

new type of function known as a bent function [5], [6], [13]. The term “bent” was

probably chosen by Rothaus because it suggests the opposite of “linear” [3]. These

functions are most notable because they have the highest nonlinearity among all functions

on the same number of variables. Because of this, they are well suited for

cryptographical applications, including being used as part of the substitution box in the

DES encryption, or the Grain-128 cipher, to mention just a few [7].

B. GENETIC ALGORITHMS (GA)

Several problems that need to be solved in a business environment involve a cost-

benefit analysis. As various scenarios stress the variables differently, desirable

components might exist in different solutions. GAs take advantage of two solutions

yielding good answers by merging the parameters of the two solutions. Although the

groundwork on GA started in the 1950s, the interaction between a conventional

microprocessor and a reconfigurable computer is allowing GAs to enter a new realm of

truly parallel operations. Although a GA has been implemented on an FPGA, this thesis

will examine their implementation in a more parallel manner [19].

 2

C. RECONFIGURABLE COMPUTING ON THE SRC-6

The SRC-6 is a microprocessor based computer that contains additional boards

known as Multi-Adaptive Processing (MAPs). Each MAP contains three Xilinx Field

Programmable Gate Arrays (FPGAs), two running user programs, and the third

controlling the others [16]. To understand how this project helps to locate bent functions,

it is necessary to know how the SRC-6 operates. The SRC-6 operates via a dual core

general purpose CPU communicating with the FPGAs. There are two methods in which

the FPGAs can be programmed to solve a problem. The first is through a hardware

description language (HDL), either Verilog or VHDL, and the other is through the high

level languages C or FORTRAN. The remainder of this paper will focus on

programming the SRC-6 with Verilog and C. Regardless of whether the FPGA is

programmed in C or HDL, where the problem solution design is written, the interface

between the microprocessors and the FPGA is through C code. Figure 1 demonstrates

the interaction between the various components of the SRC-6.

Figure 1 SRC-6 data flow path

The programmer is able to access the FPGAs on the SRC-6 by first writing

C/C++ code that is executed on the general purpose computer. When he wants to have

the FPGAs process data, he merely makes a C style function call that invokes the SRC-6.

Next, program execution is passed to a subroutine that is written in C. This subroutine,

subr.mc, is compiled to operate on the FPGA.

When a problem is solved through Verilog, the programmer designs the circuit as

he would for any FPGA. The file describing this circuit is macro.v. This module has two

interfaces to the subr.mc C code. The first is a blackbox interface (blk.v) that would be

analogous to a function prototype in C. This interface merely restates the module name

 3

and port declarations from the module source code. The other interface (info) includes

information about the macro, such as if it is pipelined or stateful. It also specifies its

latency and additional control signals that need to be applied to the circuit, such as clear

and clock signals. This code is directly parsed to generate the interface between the C

code and the Verilog code.

D. GOAL OF THIS THESIS

The goal of this thesis is to determine if GAs are useful in finding bent functions.

In the process of doing this, several different methods of looking for bent functions will

be examined. These methods restrict the search space to make it possible to enumerate

all of the bent functions. In doing so, it is desired to see how these methods can be

adapted for use in GAs.

E. THESIS ORGANIZATION

This thesis is organized as follows. Chapter II describes bent functions and how

to find them. Chapter III is a discussion on genetic algorithms, and how one is

implemented on the SRC-6. Chapter IV is a discussion on how bent functions were

found for this thesis. Chapter V is a summary of the results. Appendix A contains

additional information on the SRC-6. Appendix B are the lessons learned while

conducting the research for this thesis. Finally, Appendix C is the Verilog code for the

genetic algorithm.

 4

THIS PAGE INTENTIONALLY LEFT BLANK

 5

II. BENT FUNCTIONS

A. BACKGROUND

Bent functions contain many properties that must be examined. These properties

are important since they are used to determine if a function is bent, and provide insight in

how to construct a function that might be bent.

1. Definitions

a. Linear or Affine Function

A linear function is the constant 0, or the exclusive OR of one or more

variables. An affine function is a linear function, or the complement of a linear function.

b. Nonlinearity (NL)

The nonlinearity of a function is the least number of bits that are required

to be changed in order to convert the function into some affine function.

c. Bent Function

A function on an even number of variables is called bent, if it has the

maximum nonlinearity among all other functions on the same number of variables.

d. A-class

Suppose f is a bent function and a is an affine function. It has been

shown that g f a= ⊕ , is also bent [5]. Because of this, we say that f and g are in the

same A-class.

 6

e. Truth Table (TT)

The truth table of a function f , specifies the value of f for all

assignments of values to the variables. For example: the TT of 1 1 2 1 2 1 2f x x x x x x= + + is

1110, where 1 2x x = 00, 01, 10 and 11 map to 1, 1, 1, and 0, respectively.

f. Algebraic Normal Form (ANF)

The ANF of a function f is the exclusive OR of product terms, where all

variables occur uncomplemented. For example, consider the ANF of 1 1 21f x x= ⊕ .

g. Degree

The degree of a function is the maximum number of variables that exist in

any of its terms as expressed in the ANF. For example, let f and g be functions on 3

variables, 1x , 2x and 3x , 1 2 3f x x x= ⊕ and 1 2 3 1g x x x= ⊕ . Then, f and g have degree

2 and 3, respectively.

h. Co-functions

The TT form of a function f can be considered as a double word

0 1i ix xf f→ → which are f with ix replaced by 0 and 1 respectively. Each of the words that

comprise the TT form of a function is called a co-function. The co-function containing

the MSB is referred to as the “high” co-function, and the other co-function is referred to

as “low”.

2. Properties

a. Rotationally Symmetric (ROTS) Functions

A function is ROTS if 0 1 2 1 1 2 1 0(, ,... ,) (, ,..., ,)n n nf a a a a f a a a a− − −= . The

number of bits in an n -variable ROTS function is R [5].

 7

b. Maximum Nonlinearity

The maximum nonlinearity of an n-variable function

11 2
max () 2 2

n
nNL n

−−= − [13].

c. Weight

The weight fW of a function f is the number of ones in its truth table. A

bent function f has weight
11 2() 2 2

n
n

fW n
−−= ± [13].

d. Summary

Table 1 provides a listing of the properties on 4, 6, 8 and 10 variables.

n 2n R 12n+ max ()NL n fW

4 16 6 32 6 8 2±

6 64 14 128 28 32 4±

8 256 36 512 120 128 8±

10 1024 108 2048 496 512 16±

Table 1. Bent functions properties by number of variables

B. REPRESENTATIONS

1. Truth Table

Consider Table 2 for the expression 2x on three variables. It has a truth table

representation of 0 33x . The MSB corresponds to the table entry of, 1 2 3 111x x x = , while

the least significant bit (LSB) entry corresponds to entry 1 2 3 000x x x = . The hexadecimal

representation of 200110011 0 33x= has the MSB (Most Significant Bit) being written as

the leftmost bit.

 8

1 2 3x x x 2x or 2 1x ⊕

000 1 (LSB)

001 1

010 0

011 0

100 1

101 1

110 0

111 0 (MSB)

Table 2. Truth table

2. Algebraic Normal Form

A function is expressed in its algebraic normal form (ANF) by:

0 1 3 2 2 3 2 3 4 1 5 1 3 6 1 2 7 1 2 31f c c x c x c x x c x c x x c x x c x x x= ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕

Where 0 1 7, ,...,c c c are the values from the ANF table where 7c corresponds to the MSB.

Consider the expression 1 2 3x x x⊕ in Table 3. When it is represented in its ANF, its

expression is 201000010 0 42x= . Again, the left most bit in the hexadecimal notation is

the MSB. However, this time the entry 1 or 0 in the truth table corresponds to whether

that term exists or not in the expression. For example, the expression 1 2 3x x x⊕ has two

terms, 1 2x x and 3x . Thus, the entries 110 and 001 have a one in their associated column

to signify that the term exists in the expression. The ANF is a useful representation,

because it can be used to identify bent functions of the same A-class. If two bent

functions are of the same A-class, then all of their non-linear term coefficients will be the

same.

 9

Term 1 2 3x x x 1 2 3x x x⊕ or

1 3 2 3 1 2 3x x x x x x x+ +

01c 000 0 (LSB)

1 3c x 001 1

2 2c x 010 0

3 2 3c x x 011 0

4 1c x 100 0

5 1 3c x x 101 0

6 1 2c x x 110 1

7 1 2 3c x x x 111 0 (MSB)

Table 3. ANF table

3. Transeunt Triangle

The transeunt triangle is a data structure that allows the conversion from the truth

table form to the ANF, and vice versa [18], [2]. Regardless of the mode of operation, the

transeunt triangle receives and processes its data in the same manner. The data for the

current format is placed along the bottom row of the triangle, with the MSB being the

right most bit. The bits on the next higher row are created by the exclusive ORing of the

adjacent bits in the row below it. The ordering of these bits corresponds to the truth or

ANF table shown in Table 3 being rotated counter-clockwise90 . The output table is

read along the left side of the triangle. Its corresponding values would be as if the above

tables are rotated 120 counter-clockwise. Figures 2, 3 and 4 show the transeunt triangles

for Tables 2 and 3.

 10

1
1

1
0

1
1

1
0

1
0

0
1

1
1

0
0

1
0

1
0

0
0

0
0

x 3
x 2

x 1

1
1

1
0

1
1

1
0

1
0

0
1

1
1

0
0

1
0

1
0

0
0

0
0

x 3
x 2

x 1

1
1

10
1

11
0

10
0

11
1

00
1

01
0

00
0

0x3
x2

x1

1
1

10
1

11
0

10
0

11
1

00
1

01
0

00
0

0x3
x2

x1 00110011
0101010

111111
00000

0000
000

00
0

00110011
0101010

111111
00000

0000
000

00
0

LSB MSB

LS
B

MSB

Figure 2 Transeunt triangle conversion for 2x to 2 1x ⊕

1
1

1
0

1
1

1
0

1
0

0
1

1
1

0
0

1
0

1
0

0
0

0
0

x 3
x 2

x 1

1
1

1
0

1
1

1
0

1
0

0
1

1
1

0
0

1
0

1
0

0
0

0
0

x 3
x 2

x 1

1
1

10
1

11
0

10
0

11
1

00
1

01
0

00
0

0x3
x2

x1

1
1

10
1

11
0

10
0

11
1

00
1

01
0

00
0

0x3
x2

x1 01000010
1100011

010010
11011

0110
101

11
0

01000010
1100011

010010
11011

0110
101

11
0

LSB MSB

LS
B

MSB

Figure 3 Transeunt triangle for 1 2 3x x x⊕ to 1 3 2 3 1 2 3x x x x x x x+ +

 11

1
1

1
0

1
1

1
0

1
0

0
1

1
1

0
0

1
0

1
0

0
0

0
0

x 3
x 2

x 1

1
1

1
0

1
1

1
0

1
0

0
1

1
1

0
0

1
0

1
0

0
0

0
0

x 3
x 2

x 1

1
1

10
1

11
0

10
0

11
1

00
1

01
0

00
0

0x3
x2

x1

1
1

10
1

11
0

10
0

11
1

00
1

01
0

00
0

0x3
x2

x1 00000101
0000111

000100
00110

0101
111

00
0

00000101
0000111

000100
00110

0101
111

00
0

LSB MSB

LS
B

MSB

Figure 4 Transeunt triangle for 2 1x ⊕ to 2x

The transeunt triangle shown in Figure 4 is the inverse of the Figure 2 . On initial

observation the truth table expression would be 1 2 3 1 2 3 1 2 3 1 2 3x x x x x x x x x x x x+ + + . This,

however, can be easily simplified as in Figure 5.

1 2 3 1 2 3 1 2 3 1 2 3

1 2 3 3 1 2 3 3

1 2 1 2

2 1 1

2

() ()

()

x x x x x x x x x x x x
x x x x x x x x

x x x x
x x x

x

+ + + =
+ + + =

+ =
+ =

Figure 5 Truth table simplification

C. BENT FUNCTION DISCOVERY

There are several different approaches that can be used to discover bent functions.

Regardless of the tool used to restrict the search space to a manageable size, this research

uses the same algorithm to determine if a function is bent.

 12

1. General Case

... ...

Figure 6 General case nonlinearity calculation

Figure 6 shows a general algorithm to determine the nonlinearity of a function.

The function under test is exclusive ORed with each of the affine functions, and the

number of ones in each function is counted. The minimum number of ones is then

determined over all of the 12n+ calculations which correspond to each of the affine

functions. The resulting number is then compared to the maximum nonlinearity for the

given number of variables. If they are the same, then the function is bent.

2. Brute Force

The easiest method to determine which functions are bent is to perform a brute

force attack. By doing so, the nonlinearity of all functions in S is calculated. By doing

so, one also generated a histogram showing the distribution of the nonlinearities. This is

beneficial in that it also verifies the maximum nonlinearity equation, max ()NL n . This

method is time consuming for 6n < and impractical for 6n ≥ .

3. ROTS

It has shown that rotationally symmetric functions are rich in bent functions [5].

This means that by enumerating only the ROTS functions, which is considerably smaller

than the total number of functions, bent functions can be more readily discovered. The

 13

first step in this process is to determine all of the ROTS functions. Next, each bit is

mapped to an index. Table 4 is the Verilog code that produces the necessary mapping for

4n = .

assign TT[0] = RSI[0];
assign TT[1] = RSI[1];
assign TT[2] = RSI[1];
assign TT[3] = RSI[2];
assign TT[4] = RSI[1];
assign TT[5] = RSI[3];
assign TT[6] = RSI[2];
assign TT[7] = RSI[4];
assign TT[8] = RSI[1];
assign TT[9] = RSI[2];
assign TT[10] = RSI[3];
assign TT[11] = RSI[4];
assign TT[12] = RSI[2];
assign TT[13] = RSI[4];
assign TT[14] = RSI[4];
assign TT[15] = RSI[5];

Table 4. ROTS mapping

From this table, a 6-bit counter can be applied to the rotationally symmetric index

(RSI) to generate the truth table representation of the ROTS functions. This

representation generates the function under test, which is applied to the general case

algorithm to determine the nonlinearity as shown in Figure 7.

... ...

Figure 7 ROTS nonlinearity calculation

 14

4. By Degree

It is known that the highest degree of a bent function is
2
n [16]. Furthermore, in

the ANF of a function, the linear terms can be ignored, since they only differentiate two

bent functions in the same A-class. This, significantly reduces the total search space to

terms of degree 2, 3, …, and
2
n . For the case of 6n = , the highest degree of a bent

function is 3. This means that the only functions that must be enumerated are those of

degree 3 and 2. Thus, the total number of bits in the search space is now

6 6
15 20 35

2 3
⎛ ⎞ ⎛ ⎞

+ = + =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

. This results in only 71.86 10 %x − of the original search space of

642 functions, if the search is exhaustive. Figure 8 shows the original algorithm as

modified to accomplish this.

AFN0

AFN2
n+1

Ones

Count

Ones

Count

TT under
test

min(x0,x1,…,x2
n+1)

u1

x2

x1

f(x1...xn)

NL... ...
2n

n+1

n+1

n+1

2n

2n

2n

2n

2n

Trans TriANF MD 2n

Figure 8 Nonlinearity calculation by degree

5. Complement Optimization

The number of affine functions that need to be evaluated can be cut by ½. This is

done by recognizing the relationship between nonlinearity of a function with respect to a

particular affine function, and that affine function’s complement, and will be shown by

example. For any given n variable bent function, there are 12n+ affine functions.

However, because of the linear nature of the affine function, it is only required to

enumerate 2n of them since their complement will yield the other 2n affine functions.

This property relationship can be applied to the nonlinearity of a function.

 15

Consider the case when 4n = , and the affine functions 0 0000x and its

complement 0xFFFF . Consider a function 0 3 7f xC D= . Its nonlinearity with respect

to 0 0000x is 10, and its nonlinearity with respect to 0xFFFF is 6. Recalling that there

are 16 bits in each function on four variables, and given the affine function 0 0000x , we

can determine the nonlinearity of its complement affine function, 0xFFFF , by

subtracting its nonlinearity from 16. For this case, 16 10 6− = . In general, the below

formula can be utilized to determine the minimum nonlinearity, minNL , of a function

given the NL one of the affine functions.

1
min min(, 2)nNL NL NL+= −

Through this calculation, the following effects are observed on the circuitry

required to implement the algorithm. The number of exclusive OR gates required is

reduced by ½, along with the number of ones count calculations. However, the number

of minimization calculations required is constant, because an additional minimization is

implemented with the aforementioned subtraction. 2n subtraction units must be added to

the minNL calculation. However, the complexity of that operation is insignificant

compared to the required circuitry to implement the ones count algorithm for the affine

functions not directly tested.

D. SUMMARY

This chapter describes bent functions, and introduces their various properties. It

is through application of these properties that locating bent functions is possible, given

their rarity. The next chapter discusses genetic algorithms in preparation for how to

locate bent functions.

 16

THIS PAGE INTENTIONALLY LEFT BLANK

 17

III. GENETIC ALGORITHMS

A. BACKGROUND

Genetic algorithms have their basis by what is seen in nature. The three main

processes that will be discussed are survival of the fittest, crossover and mutation.

Survival of the fittest is similar to the idea that the stronger animals in a herd are more

likely to live and go on to produce children for the next generation. Crossover is based

on the possibility that if two parents have desirable traits, their children may have a

combination of those desirable traits. Finally, mutation is the idea that a change in a gene

might make the animal more resilient for its environment.

1. Definitions

a. Chromosome, Element or Member

A potential solution to a problem is encoded as a string and is referred to

as the chromosome. Strings can be any combination of characters, but this thesis will

only consider the case of binary digits. A chromosome may also be referred to as an

element.

b. Gene

In this thesis, a gene is each character of the chromosome.

c. Value

The value is a numerical representation of the chromosome. This can be

created in any number of methods. One common method is to directly convert the

chromosome into its integer representation. In a genetic algorithm involving

trigonometric functions, for example, the value could represent some fraction between

π− and π .

 18

d. Fitness Function

The fitness function is a function that converts the value into a fitness

value.

e. Fitness Value

The fitness value is a number that describes how close the chromosome is

to the optimal solution. The solution could be a maximum, minimum, local maxima or

local minima, depending on the problem being solved. Identifying a local maxima or

minima is of interest when utilizing a GA in a cost savings problem.

f. Population

The population is a group of elements that exist within the genetic

algorithm.

g. Generation

Genetic algorithms operate iteratively. Each iteration is referred to as a

generation. Generally, the population at the start of a generation is the population at the

end of the previous generation. For the case of the first generation, the population is

randomly generated.

h. Survival of the Fittest

Survival of the fittest is a process by which chromosomes are selected by

their fitness value. During this process, some elements are removed from the population.

This is analogous to nature in that the weaker species die off.

i. Crossover

Crossover is the process by which two elements that were selected during

survival of the fittest combine to produce two new elements. The combination occurs by

randomly picking a gene position. All of the genes to the left of this gene in chromosome

 19

a are combined with all of the genes to the right of the same position in chromosome b

to create 'a . This process repeats to create 'b with the unused portions of a and b .

This is analogous to nature in that two parents with desirable characteristics might go on

to produce children that also have desirable characteristics.

j. Selection

There are several ways to determine which of the strings are selected for

crossover. One method is to only take the elements with the best fitness values.

Unfortunately this has the effect of removing some chromosomes from the solution pool

that might actually be needed to arrive at the optimal solution. This can be countered

through the use of the “roulette wheel” algorithm which assures that all elements of the

population have at least a small chance of being selected.

k. Mutation

Mutation is the process by which the genes of a single element may be

changed by a random process. This is analogous in nature to an event causing a gene to

change in an animal thus making it more suited for survival. An example in the

following section demonstrates the need to implement mutation.

l. String Generation

In a GA, several different chromosomes exist at one time. This collection

is referred to as the population. The implementation of the GA used in this thesis has a

population of 16, based on the number of items that can easily be sorted with the Batcher

sort. Initially, the population is created through a random string generator. Once this has

been accomplished, each of the strings is evaluated with the fitness function. The results

of these calculations are then sorted from the highest fitness value to the lowest. This

ordering is then used to help determine which of the strings will be selected for crossover.

As such, this implements the concept of “survival of the fittest”.

 20

2. Example of a Genetic Algorithm

The following discussion on the implementation of genetic algorithms is based on

GAs taken from [4]. In order to solve a program using GAs, the potential solution must

first be encoded as a chromosome. Consider a problem of finding the maximum value of
2()f x x= for 0 4,095x≤ ≤ . Assume x is realized as a 12-bit binary number. Its value

is directly derived by converting the chromosome into an integer. Its fitness function is

simply the square of its value. Thus, the higher the fitness function result, the closer to

the solution you are. Obviously, the best solution to this problem is the string with 12

ones in it. Figure 9 shows the processes by which the GA operates. Finally, the example

will not implement mutation, and while doing so demonstrates its need in order to

achieve the maximum.

String
creation

Generation
start

Survival of
the fittest Crossover Mutation Generation

endFitness

Figure 9 GA algorithm

The GA starts with the creation of random strings, which represent each member

in the population. Each of the elements then has their values and fitness values calculated

as shown in Table 5.

 21

Member Chromosome Value Fitness value

1 110101100100 3,428 11,751,184

2 010100010111 1,303 1,697,809

3 101111101110 3,054 9,326,916

4 010100001100 1,292 1,669,264

5 011101011101 1,885 3,553,225

6 101101001001 2,889 8,346,321

7 101011011010 2,778 7,717,284

8 010011010101 1,237 1,530,169

Table 5. Start of 1st generation, From [4]

Initially, the population consists of the 8 randomly generated chromosomes.

Through survival of the fittest, members 1, 3, 6 and 7 are chosen, since they have the

highest fitness value. Members 1 and 3 are then chosen randomly to crossover at the

second bit from the left, while 6 and 7 crossover at the 6th bit. These positions are

marked in the following table with a “/” as shown in Table 6.

 22

Member Chromosome Value Fitness value

1 11 / 0101100100 3,428 11,751,184

2 10 / 1111101110 3,054 9,326,916

3 101101 / 001001 2,889 8,346,321

4 101011 / 011010 2,778 7,717,284

5 111111101110 4,078 16,630,084

6 100101100100 2,404 5,779,216

7 101101011010 2,906 8,444,836

8 101011001001 2,761 7,623,121

Table 6. Start of 2nd generation, From [4]

By applying only survival of the fittest to the start of the 2nd generation, the

following table is constructed. In Table 7, it can be seen that the least significant bit in all

of the chromosomes is zero. As previously mentioned, the maximum value for this GA is

a string with all ones. Thus, regardless of where crossover is performed, the least

significant bit in each chromosome will remain zero preventing the maximum from being

achieved. In order to prevent this from happening, mutation is necessary.

Member Chromosome Value Fitness value

1 110101100100 3,428 11,751,184

2 101111101110 3,054 9,326,916

3 111111101110 4,078 16,630,084

4 101101011010 2,906 8,444,836

Table 7. After survival of the fittest, 2nd generation, From [4]

 23

3. Advanced Operations

a. Selection Methods

Previously, when parents were selected for crossover, they were chosen

only by their fitness value. This prevents good genes that exist in chromosomes with a

poor fitness value from propagating themselves into later generations. By providing a

detailed selection method, a means will exist that makes it possible for good genes in bad

chromosomes to propagate.

The roulette wheel algorithm is a process by which any of the

chromosomes may be selected for crossover. It is based on an idea that the chromosomes

are chosen with a probability that depends on their fitness value. Additionally, it allows

for chromosomes with poor fitness values to be selected, albeit considerably less

frequently.

It begins by determining the sum of all of the fitness values, which are

assumed to be non-negative. Next, a random number is generated that is between 0 and

the sum of the fitness values. Next, a running total is initialized to 0, and each member of

the population has its fitness value added to it. The fitness values of subsequent members

of the population are added to the total until the running total is equal to or greater than a

randomly generated number. The last added chromosome is then selected for crossover.

This process continues until enough chromosomes have been selected to cause the

population to be filled.

b. Elitism

The roulette wheel provides an approach that ensures that any of the

chromosomes has the opportunity to reproduce and be part of the next generation. The

side effect of this is that sometimes an ideal solution is removed from the population.

Elitism is the concept that prevents this from happening. It allows certain solutions

which meet specified criteria to remain in the population. This process overcomes its not

being selected for crossover, or mutation changing a gene [4].

 24

c. Selective Crossover

As previously discussed, one step in crossover is to randomly select a

point at which to perform crossover. Consider the traveling salesman problem in which a

salesman needs to travel through a series of cities in the shortest possible trip. Suppose

that there are six cities that need to be visited, named a, b, c, d, e and f. The chromosome

is composed of the order in which the cities are visited. Thus, two possible chromosomes

would be abcdef and debcfa . If these two chromosomes were crossed in between the

third and fourth genes, the resulting chromosomes are abccfa and .debdef In each of

these cases, two cities are visited twice during the tour, and neither is a solution to the

problem. Because of this issue, additional care should be taken when performing

crossover to ensure that the resulting chromosomes are valid solutions [4].

B. IMPLEMENTATION ON THE SRC-6

The specifics of the problem described in this section deal with a GA that solves a

packing problem. Constructing a ROTS function, that might be bent, can be viewed as

this packing problem. The goal of this packing problem is to find a combination of

objects that weigh a total of 28 pounds. There are four types of items to be packed, 9

items weighing 6 pounds, 2 at 3 pounds, 1 at 2 pounds and 2 at 1 pound. This results in a

chromosome that can be described with 14 binary digits.

Note that we can divide this problem into two subproblems. The first subproblem

is to create a subtotal of 4 pounds. This can come from two possibilities. The first is that

exactly one 3 pound object and one 1 pound object are chosen. The other possibility is

that the 2 pound and both 1 pound objects are chosen. The other subproblem is to create

a subtotal of 24 pounds. There are also two ways to do this—four 6 pound, or three 6

pound and both 3 pound objects. In the latter case, this prohibits the use of the three

pound and one pound objects to create 4 pound subtotal. This process describes the

fitness function. Each subproblem contributes a score of 120 to the fitness value, thus

resulting in an optimal fitness value of 240. All other combinations of selected objects

result in a fitness value of less than 240. For example, consider three chromosomes that

 25

contain only 6 pound objects. The first, second and third chromosomes contain three,

four and five 6 pound objects respectively. Since the first and the last chromosomes do

not have the required number of 6 pound objects, their fitness sub-value would be 90.

The second chromosome, which contains the correct number of 6 pound objects, would

thus have a fitness sub-value of 120. This process holds true for all combinations of

genes, and will not be discussed further.

Figure 10 shows the data flow path for the GA and the elements described in the

previous section on GA are implemented. The sorting function is the method used

utilized to facilitate survival of the fittest.

Figure 10 GA implementation organization

1. Generation Creation

Generation creation includes several processes. There are three primary

functions. The first is the construction of new chromosomes from pseudo-random

numbers. Second is the calculation of the fitness value for each of the chromosomes.

Finally, the third process is ensuring genetic diversity.

a. Generation Creation

Generation creating is achieved through the circuit in Figure 11. This

circuit is representative of how each of the 16 different chromosomes is created for the

 26

GA. The number of chromosomes is based on the ability to apply the Batcher sort to

them. A larger population is possible if the Batcher sorting module is expanded to

accommodate the population. Furthermore, it shows how the clear unit introduces new

strings into the population. A linear feedback shift register (LFSR) initializes the

population with pseudo-random chromosome strings. The LFSRs are initialized through

a clear signal generated during the first generation. Additionally, for each position in the

population, the corresponding chromosome from the previous generation has its fitness

value determined. Once the fitness value is created, it is appended onto its chromosome’s

associated bit string.

Figure 11 Generation creation

b. Compare and Clear Unit

The compare and clear unit evaluates the previous generation fitness

function against a user-specified constant, which is capable of being specified at the

keyboard. It serves to replace (clear) the chromosome from the previous generation, if it

does not reach a threshold value, with a new chromosome generated by the LFSR. This

process helps the implementation of the survival of the fittest concept previously

discussed. The CLEAR signal that is generated during the first generation is also used by

 27

this unit causing string initialization when the GA starts. Finally, it is also capable of

generating additional clear signals can be generated through the half-life and Order 67

circuits.

c. Half-life

Half-life operates on the idea that, on each generation, the chromosome at

a particular element position is loaded into successive registers. If those registers contain

the same value over 3 generations, a clear signal is generated forcing a new chromosome

into that position in the generation. The “3 generations rule” was arbitrarily chosen to

allow sufficient time for fit chromosomes to crossover and propagate throughout the

population. This implementation is shown in Figure 12.

Figure 12 Half-life circuit

d. Order 67

Order 67 is based on the idea that if adjacent members in the top four

chromosomes in the population are the same (clones), there is a lack of diversity, and

thus, a clear signal should to be generated in order to replace an old chromosome by a

new one. This is of concern due to the small population size. This is implemented

through a set of simple comparison circuits whose output drives an OR gate that provides

the CLEAR signal as shown in Figure 13.

 28

Figure 13 Order 67

e. String Generation

The circuit in Figure 14 is an example of a general purpose LFSR that was

used in EC4830 from the course notes, and from an exam question. Its primary

advantage is that it can produce a maximal run sequence provided the correct tap

positions. The number of different outputs that an LFSR can produce is dependent on its

tap positions. Since an LFSR requires at least 1 bit to be one at all times during its

operation, the maximal run of an n bit LFSR is 2 1n − .

Figure 14 General case LFSR

The code below shows how the LFSR is parameterized. The parameter n

determines the number of bits in the shift register. The tap parameters allow for up to 4

taps, dependant on the particular LFSR being implemented. The tap position came from

 29

a predetermined table [17]. The module that instantiates the LFSR module specifies the

tap parameters. Therefore, tap parameters are not shown in this section of code. When

implemented, the tap positions were at 13, 4, 2 and 0. Figure 15 is the Verilog code that

was written to realize the general case LFSR shown in Figure 14.

Figure 15 General case LFSR Verilog code

Figure 16 shows the code that is necessary to instantiate the LFSRs. Since

the LFSR needs to retain its state from one cycle to the next, it uses the VALID and ITER

control signals to allow the LFSR to only shift state once per call to the macro. The

inputs to the macros allow for different random number seeds to be specified from

main.c.

 30

Figure 16 LFSR instantiation code

f. Numerical Representation

As previously mentioned, there are 14 genes in each chromosome for this

GA. The genes are organized in the chromosome such that genes representing an object

with the same weight are adjacent to one another. Table 8 shows an example of the

layout of the chromosome’s genes with respect to its weight.

Bit 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Weight 6 6 6 6 6 6 6 6 6 3 3 2 1 1

Table 8. Chromosome format

 31

g. Fitness Function

The fitness function was described briefly in the introduction to this

section. The flow chart in Figure 17 is representative of its implementation in Verilog.

The figure refers to lookup tables that will not be discussed in detail. The basis for the

tables is on how much of each of the fitness sub-problems has been correctly solved. The

maximum fitness is 240 and the minimum is 0. The maximum is based on each of the

sub-problems receiving a fitness sub-value of 120. The width of the fitness value is 8

bits.

Are there 3 6s? Use table 1YES

Are there 4 6s? YES

Count 6s,
3s, 2s and

1s

Are there 2 1s? Use table 2YES

Use table 3

Use table 4

Figure 17 Fitness function flowchart

2. Sorting

The need to sort the fitness values in the population is complicated by two factors.

When the fitness values are sorted, their corresponding chromosomes must also be

swapped. If this does not happen, the fitness values would lose their meaning. The

 32

second factor is based on the nature of operating the GA on an FPGA – that is the need to

sort the chromosomes in hardware. This is why a parallel sort, such as the Batcher sort,

was chosen [1]. Furthermore, because it is implemented on specialized hardware, an

FPGA, it is able to take full advantage of the parallelism of the Batcher sort.

Figure 18 is taken from [9]. Each horizontal line represents an element in the

population. The vertical arrows represent a comparison and swap, when required,

between the two elements. The well-trained eye will notice the symmetry involved in

this sort. Simply put, sorting 16 elements first requires the sorting of two sets of 8

elements and then a merging of the two sets. Likewise, sorting 8 elements first requires

sorting two sets of 4 elements, and so forth. Of particular concern is ensuring that all

paths through the sorting network have the same pipeline length. This is easily seen on

element e0. After the two 8 element sets are sorted either e0 or e8 is the largest. Once

they are compared, and swapped if required, no further comparisons need to be made

with e0. Since, after each comparison and swap is made, the resultant values are loaded

into registers, those elements not compared in a clock cycle must also be loaded into

registers to ensure all data pipelines are of equal length. There are 4 comparisons in the

shortest path, and 10 comparisons in the longest path.

Figure 18 16 element Batcher sort, From [9]

 33

Each arrow in Figure 18 is realized by the sorting element shown in Figure 19.

As previously mentioned, it is important to maintain the relationship between the

chromosome and its fitness value when the fitness value is sorted. The comparison

between the bits representing the fitness values determines whether or not a swap will be

made.

Figure 19 Swapping element for sorting

3. Crossover and Mutation

There are two main parts to the crossover and mutation section, namely crossover

and mutation. There is an additional helper module that provides a scalable means to

increment the addresses of a ROM.

a. ROM Address Control

Due to the use of several ROMs in this GA, a common circuit was created

to control accessing their elements and is shown in Figure 20. This allows easily scaling

the GA to allow ROMs containing more words. The first element is an adder, which

merely adds 1 to the previously used address. The multiplexer is controlled by the

CLEAR signal that is generated during the first generation. When it is high, the output of

 34

the multiplexer is 0, thus providing a means to initialize the address register. As

previously mentioned, the address register provides the adder with the address to be

incremented, and which value from the ROM that is to be accessed.

Figure 20 ROM address control

b. Crossover

As previously mentioned, the need to select members of the population for

crossover is essential for proper operation of the GA. Although the roulette wheel

method provides for a good way to select parents, it is difficult to implement in the

constant time needed for this pipelined problem. Furthermore, the need to generate

random numbers across a range that is unspecified until all strings have been created is

difficult, if not impossible, to accomplish in Verilog. In order to combat this, a ROM was

created that picked which elements would crossover. This was achieved by creating a

C++ program that generated 32-bit words. These words consist of 8 nibbles, with each

nibble representing which one of the 16 elements in the population is selected for

crossover. The selection probability can be changed to whatever is desired for

experimentation.

The roulette wheel is based on the desire that each element of the

population has a chance at being selected for crossover. The sum of all of the fitness

values is first determined. Next a random number is generated between the 0 and this

sum. A running total is next initialized to zero. The fitness value of each of the elements

 35

is added to the running total until the running total meets or exceeds the random number

generated. When this happens, the last element added to the running total is selected for

crossover.

The criterion for the formula that was implemented was to provide a rough

approximation of the roulette wheel method, albeit not at the same proportions as

described by the roulette wheel method. At the output of the sorting circuit, the elements

are sorted from most fit to least fit. They are then assigned a name, with 0 indicating the

best fitness value, and 15 the worst. A list was created from which each element is

selected. The composition of the list is initially 16 0’s, 15 1’s, …, and 1 15. This

distribution allows all elements to be selected for crossover, while favoring those

elements with the best fitness values. Initially, the probability that the best fitness value

is selected for crossover is 11.7%. Likewise the second best and worst fitness values

have a probability of 11.0% and 0.7%, respectively. The elements of the list are then

shuffled and the first element is selected as the first nibble in the word that was being

stored in the ROM. The list is then parsed removing all copies of the element that was

just selected. Thus, if the fittest element is selected on the first choice, the second fittest

element now has a probability of 12.5% of being selected, while the worst fit element has

a probability of 0.8%. Generally, GA implementations allow an element to be selected

for crossover multiple times. However, due to the small population size, this

implementation removes elements selected for crossover to help force genetic diversity.

This process continues until eight elements are selected. The remainder of the C++

program creates the structure that wraps the ROM values with the necessary Verilog code

to facilitate its instantiation. An example of one word that would be stored in this ROM

is 32’b0000_0001_0011_0010_1000_0110_0100_1110. When this ROM is read,

elements 0, 1, 3, 2, 8, 6, 4 and 14 would be selected for crossover.

All crossover operations are contained within the crossover module. It

consists of a crossover ROM and 4 crossover units. The ROM provides a control signal

to the two multiplexers in the crossover units directing which elements will be selected

for crossover. The crossover units process the selected elements to create the children. A

crossover module is shown in Figure 21.

 36

Figure 21 Crossover module

Since crossover and mutation destroy the fitness value of the

chromosomes, the bits representing the fitness value are discarded. Each crossover unit

consists of 2 16-to-1 multiplexers and a bit swapper module. Each of the multiplexers is

controlled by one of the nibbles produced by the previously mentioned ROM. The output

of these multiplexers is then applied to the bit swapping module as shown in Figure 22.

 37

Figure 22 Crossover unit

The bit swapping module consists of fourteen 2 input multiplexers. Each

multiplexer receives the same control signal, the crossover code; however, the inputs are

reversed in one of multiplexers as shown in Figure 23. This creates a 14 bit swapping

circuit where each bit is swapped based on its associated value in the crossover code (the

control signal for the multiplexers that perform crossover). This is the same basic idea

that is used in the swapper elements for the sorting circuit.

 38

Figure 23 1 bit crossover circuit

As previously mentioned, care should be taken when choosing the bit

position where crossover will occur. Since the fitness value is composed of two

subvalues, the decision was made to perform crossover at the boundary between the

objects with a weight of 6 pounds and those of 3 pounds. Consider two elements with

relatively high fitness values. One could meet the criteria of having four 6 pound objects

selected, and the other chromosome meets the criteria of having a combination of objects

selected that total 4 pounds. Then, these two elements crossover at the aforementioned

boundary, one of their children would have the optimal solution. In order to provide

greater flexibility, and to demonstrate the effects of choosing a crossover point, the

crossover code is capable of being specified by the user at run time.

 39

c. Mutation

Although it was previously shown that mutation is essential to GAs, it is

nonetheless a rare occurrence. Since mutation is essentially the inversion of a bit, this is

most easily accomplished through an exclusive OR gate. In this implementation of the

GA, the frequency of mutation is composed of two factors, how often a mutation might

take place, and how likely it is that each individual bit will mutate. The probability of

mutation is usually on the order of 1 bit out of a 1,000; however, like all aspects of the

GA, each of the parameters is very dependent on the problem [4]. Since this research

does not expect mutation to play a large role due to the design of the chromosome and

fitness function, mutation is implemented to demonstrate proof of concept. For example,

suppose that there is a 1% chance that a mutation will take place during a generation. For

each time that a mutation takes place, each bit has a certain probability, for example 10%,

that it will mutate. This means that a mutation might be “scheduled” to take place in

which no mutation actually occurs.

A mutation string could be shown to be the 14-bit string that represents

which bits will be inverted. Because of the difficulties that are involved in making these

determinations in Verilog, these mutation strings are most easily stored in a ROM. For

each generation in which mutation does not take place, the 14-bit string is 0. This implies

that one could have 14 100 1,400x = consecutive zeroes before the occurrence of a one.

This means that the mutation ROM is a good candidate for compression.

The compression for mutation was decided to be as simple as possible to

provide at least the proof of concept. It was then decided to create the mutation string as

follows: 7-bits of zero run length, and 14-bits of mutation code and 4-bits of element

selection. The seven bit length is based on a given probability that there is a 1% chance

that mutation will occur during a generation. This means that, over 128 generations, it is

likely that a mutation will occur. However, since this is not guaranteed, the exception to

this case will be discussed later.

Again, the ROM is generated as Verilog code using a C++ program.

Random numbers are generated with the specification that 1% of the strings will mutate.

 40

For each bit, there is a 10% chance that it will mutate, which is represented by encoding a

one. In the cases in which 128 generations pass without a mutation, the mutation code is

automatically created as a 14-bit 0 vector. Finally, the 4 bits to select which element of

the population is to be mutated are randomly created in the C++ program.

Figure 24 shows the operation of the mutation circuit. It consists of four

main parts. Starting from the right, a multiplexer that is controlled by how many

generations have passed since the last mutation. If the GA is ready to mutate, then its

output is the mutation code and element selection from the ROM; otherwise it is zero.

Next is the mutation ROM. The second element is an incrementer that controls the

address lines for the ROM. The first element is another incrementer that counts the

number of generations since the last mutation. It compares that number with the zero run

length value stored in the ROM, and generates the control signal for the multiplexer

controlling the mutation code. The remaining circuitry is provided to control

initialization and operation of the circuit.

Figure 24 Mutation ROM

C. ADVANCED IMPLEMENTATION ISSUES

1. Circuit Reutilization

One of the key elements to the GA is the fitness function. The current

implementation of the GA includes 16 elements. Each of these elements requires two

 41

instances of the fitness function. The first performs the calculation of the fitness value

from the previous generation, and the fitness for the value from the LFSR. This is made

possible due to the small size of the fitness function. Unfortunately, if the fitness

function was chosen as the nonlinearity calculation, thus allowing searching for bent

functions over all of the search space of 6n = , the available resources on the FPGA

would be quickly exhausted. Table 9 shows the utilizations for two instances and eight

instances of the 6n = nonlinearity calculation. Of further clarification, no other circuitry

is involved with these utilizations.

 2 calculations 8 calculations

Number of Slice Flip Flops 12% 33%

Number of 4 input LUTs 19% 70%

Number of occupied Slice 28% 94%

Freq 100.1 MHz 100.0 MHz

Table 9. FPGA utilization

Because of the excessive utilization of the FPGA resources, it is necessary to

efficiently use the available resources. There are two methods for this. The first is to

spread the circuitry over several FPGAs, or through multiple executions, reprogramming

the FPGA during execution. For example, moving 128 bits between the macro and

subr.mc requires using two 64-bit variables. Unfortunately, the current version of the

FPGA C compiler does not provide an efficient mechanism to move large amounts of

data between the Verilog module and the C code on the FPGA. This is problematic,

since for each 64 bits, or fraction of, one variable must be used to pass the data between

the module and the C code, and this must be done for all of the 16 elements. Thus, in

order to only determine the nonlinearity of one function on 10n = , 16 variables are

required to be passed to the macro.

This implies that it might be better to reuse the circuitry that is already laid down

on the FPGA. What this means, in the case of the fitness function, is to provide a state

machine that will load a specified register on each clock cycle. Figure 25 demonstrates

 42

how this can be accomplished. In this case, the fitness function is substituted by a shift

register to show how the different registers can be loaded with an expected value on each

clock cycle.

Figure 25 Circuit reutilization

This circuit operates by three main processes. The moore34 module is a state

machine. Its output controls the 4 to 16 decoder with enable circuit. The decoder circuit

operates as a one hot decoder, if its enable bit is set, otherwise, all of its outputs are 0. Its

outputs are used to enable one of 16 registers that are loaded by a common function, in

this case a shift register. The shift register is initialized on the CLR signal from a stateful

macro. A discussion of stateful macros is included in Appendix A. The state machine

that was previously mentioned is described in Figure 26.

 43

Figure 26 Reutilization state machine

The basic premise of the state machine can be determined by examining the bit

code for each state as shown by the number inside each state. The MSB is inverted and

applied to the enable line on the decoder. The remaining four bits are then directly

applied to the decoder to determine which register needs to be loaded. When the state

machine receives its clear signal, it aligns itself such that the next transition will cause

register 20000 to be loaded. Each successive register is then loaded until all have been

loaded. The machine then loops until the next CLEAR signal is received causing the

machine to reset. When this machine is implemented with an actual fitness function care

must be taken regarding the latency of the fitness function. Its latency must match how

long the machine cycles in an initial delaying state until a fitness value is propagated

through its pipeline and is ready to be loaded onto an element register.

 44

2. Random Access to ROMs

In order to provide greater variation in program execution, the aforementioned

ROMs should not be accessed sequentially, but instead as randomly as possible. The

method that was tested to implement this is through a 32-bit cyclic-redundancy check

(CRC).

To provide another element of randomness, the value that was calculated via its

CRC is calculated by a random number from main.c and added to a timer value from

subr.mc. Because accessing the timer prevents pipelining within a loop, the

aforementioned sum is incremented during each loop iteration. This provides a

randomization of accessing the ROM.

Because of the fixed width nature of the data whose CRC is being calculated, a

table lookup CRC was implemented. This allows calculation of the CRC one byte at a

time, thus reducing by a factor of four the computation time when compared to a CRC

calculation done on a bit-by-bit basis [11]. The CRC lookup table was generated by C

code using the method described by [20]. CRC calculation was performed by unrolling a

CRC calculation loop of 32-bits and translating the resultant C code into Verilog. This

circuit is realized in Figure 27.

Figure 27 CRC circuit

D. SUMMARY

This chapter describes GAs, with a focus on how they work. The implementation

of a GA on the SRC-6 is also given. The weight problem discussed in the chapter is

fundamental to the GA that is implemented in this thesis, and will be referred to in

subsequent chapters. The next chapter discusses the discovery of bent functions.

 45

IV. BENT FUNCTION DISCOVERY

A. OBSERVATIONS

1. Co-function Repetition

An analysis of the bent functions on 4n = suggests that co-functions might be a

means to construct some bent functions. When the 896 bent function on 4n = are

analyzed by co-function, it is revealed that there are 112 unique co-functions. By

definition, there are two positions where a co-function can exist, the high and the low

position. Each of the co-functions occurs 8 times in the high and 8 times in the low

positions. This same analysis was conducted on 6n = with similar results. In this case,

among the 5,425,430,528 bent functions on 6 variables there are 14,054,656 unique co-

functions. Each of the co-functions occur the same number of times in the high and low

position. We propose the following:

Conjecture: All co-functions of n -variable bent functions occur the same

number of times in the high and low position among n -variable bent functions.

2. Index Runs

It has been shown that there are 42,386,176 bent function A-classes on 6n =

[12]. We have verified this on the SRC-6. All of these bent functions were enumerated

using the degree method described in section II.C.4. Since there are 6 12 + bent functions

in each A-class for 6n = , there are a total of 5,425,430,528 6-variable bent functions.

During this, an interesting series of observations were made. First, it is important to

understand how the mapping is accomplished. The initial mapping formula is derived

from the highest degree of a bent function is
2
n and is shown in Tables 10 and 11 [13].

 46

Degree 6 5 5 4 5 4 4 3 5 4 4 3 4 3 3 2 5 4 4 3 4 3 3 2 4 3 3 2 3 2 2 1
ANF bit 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

Index x x x x x x x 15 x x x 16 x 17 18 0 x x x 19 x 20 21 1 x 22 23 2 24 3 4 x

Table 10. Degree mapping, 6n = , Map A, part 1

Degree 5 4 4 3 4 3 3 2 4 3 3 2 3 2 2 1 4 3 3 2 3 2 2 1 3 2 2 1 2 1 1 0
ANF bit 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Index x x x 25 x 26 27 5 x 28 29 6 30 7 8 x x 31 32 9 33 10 11 x 34 12 13 x 14 x x x

Table 11. Degree mapping, 6n = , Map A, part2

The first row in the tables corresponds to the degree of the function based on a bit

being present in that position. The second row indicates which bit is being referred to.

The bottom row is an index to distinguish between second and third degree functions.

For ease of reading, the second degree bits are in red, and the third degree bits are in blue.

Those bits corresponding to degrees other than 2 and 3 are indicated by a black ‘x’.

Looking solely at the bits corresponding for the second degree functions, we

notice the first bit is at location 48 and the second at 40. Their corresponding indices are

0 and 1. This pattern continues until the last 2nd degree function, located at bit 3, is

assigned the index of 14. Similarly, the 3rd degree functions begin by again starting from

the MSB and working right. Thus, bit 56 has index 15, and 52 has index 16.

The following short hand is introduced to describe the mapping. For example, in

Tables 10 and 11, the 2nd degree functions are mapped as 3 14, 5 13, as shown by red

circles. Likewise, the 3rd degree functions are mapped as 7 34, 11 33, as shown by

blue circles. The map shown above shall be referred to as Map A. Different patterns

have been noticed by changing the mapping order. For example, using the above short

hand, a new map can be defined as 2nd: 3 34, 5 33 and 3rd: 7 19, 11 18. This

mapping shall be known as Map B. Map C is described as 2nd: 3 0, 5 1 and 3rd:

7 15, 11 16. Map D is described, as 2nd: 3 20, 5 21 and 3rd: 7 0, 11 1. Finally

a random map was used. These mappings are shown in Tables 12 through 19.

Degree 6 5 5 4 5 4 4 3 5 4 4 3 4 3 3 2 5 4 4 3 4 3 3 2 4 3 3 2 3 2 2 1
ANF bit 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

Index x x x x x x x 0 x x x 1 x 2 3 20 x x x 4 x 5 6 21 x 7 8 22 9 23 24 x

Table 12. Degree mapping, 6n = , Map B, part 1

 47

Degree 5 4 4 3 4 3 3 2 4 3 3 2 3 2 2 1 4 3 3 2 3 2 2 1 3 2 2 1 2 1 1 0
ANF bit 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Index x x x 10 x 11 12 25 x 13 14 26 15 27 28 x x 16 17 29 18 30 31 x 19 32 33 x 34 x x x

Table 13. Degree mapping, 6n = , Map B, part 2

Degree 6 5 5 4 5 4 4 3 5 4 4 3 4 3 3 2 5 4 4 3 4 3 3 2 4 3 3 2 3 2 2 1
ANF bit 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

Index x x x x x x x 34 x x x 33 x 32 31 14 x x x 30 x 29 28 13 x 27 26 12 25 11 10 x

Table 14. Degree mapping, 6n = , Map C, part 1

Degree 5 4 4 3 4 3 3 2 4 3 3 2 3 2 2 1 4 3 3 2 3 2 2 1 3 2 2 1 2 1 1 0
ANF bit 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Index x x x 24 x 23 22 9 x 21 20 8 19 7 6 x x 18 17 5 16 4 3 x 15 2 1 x 0 x x x

Table 15. Degree mapping, 6n = , Map C, part 2

Degree 6 5 5 4 5 4 4 3 5 4 4 3 4 3 3 2 5 4 4 3 4 3 3 2 4 3 3 2 3 2 2 1
ANF bit 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

Index x x x x x x x 19 x x x 18 x 17 16 34 x x x 15 x 14 13 33 x 12 11 32 10 31 30 x

Table 16. Degree mapping, 6n = , Map D, part 1

Degree 5 4 4 3 4 3 3 2 4 3 3 2 3 2 2 1 4 3 3 2 3 2 2 1 3 2 2 1 2 1 1 0
ANF bit 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Index x x x 9 x 8 7 29 x 6 5 28 4 27 26 x x 3 2 25 1 24 23 x 0 22 21 x 20 x x x
Table 17. Degree mapping, 6n = , Map D, part 2

Degree 6 5 5 4 5 4 4 3 5 4 4 3 4 3 3 2 5 4 4 3 4 3 3 2 4 3 3 2 3 2 2 1
ANF bit 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

Index x x x x x x x 5 x x x 30 x 22 3 23 x x x 21 x 8 1 29 x 7 15 2 6 24 9 x

Table 18. Degree mapping, 6n = , Random Map, part 1

Degree 5 4 4 3 4 3 3 2 4 3 3 2 3 2 2 1 4 3 3 2 3 2 2 1 3 2 2 1 2 1 1 0
ANF bit 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Index x x x 10 x 11 13 26 x 19 27 0 20 16 17 x x 14 28 32 18 25 12 x 4 33 34 x 31 x x x

Table 19. Degree mapping, 6n = , Random Map, part 2

This mapping can be extended to higher values of n by using the following

technique. To construct the mapping for 7n = , the above table is duplicated and

appended to the LSB of the original table. The degree value for the original table is then

incremented by one and the ANF bits are renumbered in the same manner as the original

table, while the duplicated partition is left unchanged. The index of a bit must be

 48

renumbered to achieve unique values. Again, since this thesis only focuses on bent

functions of even n , the case of 7n = is only presented as an intermediate step to

achieve the mapping for 8n = .

Another method that can be used to construct the table is to recognize that the

values in the degree row correspond to the number of ones in the binary form of the ANF

bit. For example, 10 263 111111= has 6 ones in it, and corresponds to a 6th degree

function. Likewise, 10 242 0101010= has 3 ones in its binary representation

corresponding to a 3rd degree function.

As previously discussed, this method of mapping the functions by degree allows a

search to be conducted only on those functions that can be bent. However, as shown in

the above table, this still produces a large search space, 352 . We know that there are

42,386,176 ROTS bent functions on 6n = [12]. The SRC-6 has 6 On Board Memory

(OBM) banks located on the MAP, each of which can pass 523,776 64-bit values

between main.c and subr.mc. There is not enough OBM to allow storing all of the

indices prior to returning them to the microprocessor. Thus, it will take main.c 14 calls to

subr.mc in order to retrieve all of the indices representing bent functions. The issue of

transferring the indices is further complicated when considering the additional code

required to distribute the indices across the six OBMs. Although striping the data across

multiple OBMs will make the code more efficient, a less complicated process was chosen

to process all of the indices. To overcome this limitation, the search space of 352 is

broken into 512 equal parts, called partitions. This number of partitions was chosen to

allow a large amount of the loop to be performed on the FPGA, while still having a

reasonable assurance the partitions produced a small enough set of bent function indices

that they would not exceed the capacity of the OBM. This is done by creating a loop in

main.c which called subr.mc. The loop is over the range of 0 to 511. Subr.mc has its

own loop that makes 35 9 262 / 2 2= calls to a macro. This macro acquires 9 bits from

main.c (passed through subr.mc) and 26 bits from subr.mc to form a 35 bit number that

represents the ANF of a 3rd or 2nd degree 6-variable function, whose nonlinearity is

computed in the macro.

 49

Upon initial execution of the program, and the subsequent data analysis, it was

noticed that bent functions commonly occurred as consecutive indices of the 35 bit ANF.

For example, suppose the index 656 is discovered to be bent. This is to say, that when

the number 656 is applied to the mapping tables above, the resultant ANF is a bent

function. The next index, 657, was also discovered to be bent. To completely examine

this, a program was written to analyze the indices of bent functions for those cases where

consecutive indices yield bent functions. These observations introduce two new terms,

index adjacent (IA) bent functions and an IA group. Two bent functions are IA if their

index differs by one. A collection of consecutive IA bent functions form an IA group.

The length of an IA group is the number of IA bent functions in that group. A future GA

may take advantage of this by searching for bent functions by degrees. In doing so,

mutation could be implemented by adding one to the index. By doing so, on a bent

function, it is possible that the resulting function will also be bent.

Figures 28 and 29 and Table 20 are produced through the analysis of Map A.

From these figures and table, we can make some interesting observations. First, note that

there are no IA bent functions in partitions above 31. Figure 29 shows how the IA groups

are distributed among the 512 partitions. For example, Figure 28 shows that 123,045

bent functions occur in Partition #0, the first partition. Finally, Table 20 shows a table of

the length of the IA groups. Second, which only holds true for this experiment, is that all

runs exist in the pattern of 2 1,1 4n n− ≤ ≤ . Figures 30 through 35 and Tables 21 through

23 show the corresponding representations for Maps B, C and D.

 50

IA Bent Functions, Map A

0

20000

40000

60000

80000

100000

120000

140000

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

Partition

Number of IA Bent Functions

Figure 28 IA bent functions, Map A

IA Groups, Map A

0

5000

10000

15000

20000

25000

30000

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

Partition

N
um

be
r

Number of IA groups

Figure 29 IA groups, Map A

 51

Group
Length

Frequency of
Group Length

3 50736
7 4704

15 1568

Table 20. Frequency of group length in all partitions, Map A, 6n =

IA Bent Functions, Map B

0

100

200

300

400

500

600

700

800

900

1000

0 17 34 51 68 85 10
2

11
9

13
6

15
3

17
0

18
7

20
4

22
1

23
8

25
5

27
2

28
9

30
6

32
3

34
0

35
7

37
4

39
1

40
8

42
5

44
2

45
9

47
6

49
3

51
0

Partition Run

N
um

be
r

Number of lumped bent functions

Figure 30 IA bent functions, Map B

IA Groups, Map B

0

50

100

150

200

250

300

350

0 16 32 48 64 80 96 11
2

12
8

14
4

16
0

17
6

19
2

20
8

22
4

24
0

25
6

27
2

28
8

30
4

32
0

33
6

35
2

36
8

38
4

40
0

41
6

43
2

44
8

46
4

48
0

49
6

Partition Number

N
um

be
r

Number of lumped groups

Figure 31 IA groups, Map B

 52

Group
Length

Frequency
of Group
Length

2 254
3 14268
4 4
5 32

Table 21. Frequency of group length in all partitions, Map B, 6n =

IA Bent Functions, Map C

0

2000

4000

6000

8000

10000

12000

14000

16000

0 6 12 18 24 30 36 42 48 54 60 66 72 78 84 90 96 10
2

10
8

Partition Number

Nu
m

be
r

Number of groups

Figure 32 IA bent functions, Map C

 53

IA Groups, Map C

0

10000

20000

30000

40000

50000

60000

70000

0 6 12 18 24 30 36 42 48 54 60 66 72 78 84 90 96 10
2

10
8

Partition Number

Nu
m

be
r

Number of lumped bent functions

Figure 33 IA groups, Map C

Group
Length

Frequency
of Group
Length

2 528
3 33824
4 48
5 96
7 8832

15 720
31 48

Table 22. Frequency of group length in all partitions, Map C, 6n =

 54

IA Bent Functions, Map D

0

100

200

300

400

500

600

700

800

900

0 24 48 72 96 12
0

14
4

16
8

19
2

21
6

24
0

26
4

28
8

31
2

33
6

36
0

38
4

40
8

43
2

45
6

48
0

50
4

Partition Number

N
um

be
r

Number of lumped bent functions

Figure 34 IA bent functions, Map D

IA Groups, Map D

0

50

100

150

200

250

300

0 24 48 72 96 12
0

14
4

16
8

19
2

21
6

24
0

26
4

28
8

31
2

33
6

36
0

38
4

40
8

43
2

45
6

48
0

50
4

Partition Number

Nu
m

be
r

Number of groups

Figure 35 IA groups, Map D

 55

Group
Length

Frequency
of Group
Length

2 161
3 17484
4 4
7 296

Table 23. Frequency of group length in all partitions, Map D, 6n =

More interesting results are obtained through a random process. A C++ program

was written that takes the bits that are mapped to an index and puts them into a data

structure. The ordering of the elements in the data structure is then shuffled. The first

element is assigned the next sequential index, and then removed from the data structure.

This process continues until the data structure is empty. The Figures 36 and 37 and Table

24 show the distribution of the IA bent functions groups and their corresponding lengths.

These results show several things of interest. First, is that each partition run has

at least one IA bent function group. Closer analysis shows that the minimum number of

IA groups in a partition run is 8. In all of the other maps, at least one partition has no IA

groups. The other item of interest is that all IA groups have a length of either 2 or 3.

IA Bent Functions, Random Map

0

100

200

300

400

500

600

700

0 23 46 69 92 11
5

13
8

16
1

18
4

20
7

23
0

25
3

27
6

29
9

32
2

34
5

36
8

39
1

41
4

43
7

46
0

48
3

50
6

Partition Number

N
um

be
r

Number of lumped functions

Figure 36 IA bent functions, Random Map

 56

IA Groups, Random Map

0

50

100

150

200

250

300

350

0 23 46 69 92 11
5

13
8

16
1

18
4

20
7

23
0

25
3

27
6

29
9

32
2

34
5

36
8

39
1

41
4

43
7

46
0

48
3

50
6

Partition Number

Nu
m

be
r

Number of groups

Figure 37 IA groups, Random Map

Group
Length

Frequency
of Group
Length

2 26254
3 794

Table 24. Frequency of group length in all partitions, Random Map, 6n =

An analysis of this data yields two conclusions. The first is that a future GA may

be able to incorporate this process in finding bent functions. Suppose the chromosome is

the random index mapping to the ANF representation of a function. If mutation is

defined as the addition of a bit to this index, it is possible that one bent function could

mutate into another bent function. Additionally, it may be practical to use the random

index map on the index mapper in order to find a bent function on 10n = .

Based on the figures and tables above, the following term is introduced:

##
#

partitions with IAbent functionsIAconcentration of IA groups x
partitions

=

 57

Table 25 shows that the IA concentration is highest for the random map. This is of

interest on how to choose the mapping for a GA that implements a function’s ANF as a

chromosome. If mutation is implemented as adding 1 to the index, the mutated

chromosome of a bent function may also be bent.

IA concentration
Map A 2,004.19
Map B 9,070.32
Map C 2,067.00
Map D 15,701.88
Random 27,048.00

Table 25. IA concentration on 6n =

Figures 38 to 42 show the bent function distribution per partition for the five

different maps use. The first item of note is in Figures 38 and 40. In each of those tests,

the first partition contains considerably more bent functions than the others. The second

item is visible in the figures, and verified in Table 26. Table 26 shows the standard

deviation of the number of bent functions per partition. The random distribution shows

that it may be more practical to find bent functions using the random map when

examining problems with more variables. This is based on the observation that as the

number of variables goes up; the scarcity of bent functions goes up even more. It is

proposed that since the random map has the lowest standard deviation, the existence of a

bent function in a partition for 8n = or 10n = is more probable.

 58

Bent Function Distribution, Map A

0
50000

100000
150000
200000
250000
300000
350000
400000
450000
500000

0 22 44 66 88 11
0

13
2

15
4

17
6

19
8

22
0

24
2

26
4

28
6

30
8

33
0

35
2

37
4

39
6

41
8

44
0

46
2

48
4

50
6

Partition Number

N
um

be
r o

f B
en

t F
un

ct
io

ns

Figure 38 Bent function distribution, Map A

Bent Function Distribution, Map B

0

20000

40000

60000

80000

100000

120000

140000

0 22 44 66 88 11
0

13
2

15
4

17
6

19
8

22
0

24
2

26
4

28
6

30
8

33
0

35
2

37
4

39
6

41
8

44
0

46
2

48
4

50
6

Partition Number

N
um

be
r o

f B
en

t F
un

ct
io

ns

Figure 39 Bent function distribution Map B

 59

Bent Function Distribution, Map C

0
50000

100000
150000
200000
250000
300000
350000
400000
450000
500000

0 22 44 66 88 11
0

13
2

15
4

17
6

19
8

22
0

24
2

26
4

28
6

30
8

33
0

35
2

37
4

39
6

41
8

44
0

46
2

48
4

50
6

Partition Number

N
um

be
r o

f B
en

t F
un

ct
io

ns

Figure 40 Bent function distribution, Map C

Bent Function Distribution, Map D

0

20000

40000

60000

80000

100000

120000

0 22 44 66 88 11
0

13
2

15
4

17
6

19
8

22
0

24
2

26
4

28
6

30
8

33
0

35
2

37
4

39
6

41
8

44
0

46
2

48
4

50
6

Partition Number

N
um

be
r o

f B
en

t F
un

ct
io

ns

Figure 41 Bent function distribution, Map D

 60

Bent Function Distribution, Random Map

0

20000

40000

60000

80000

100000

120000

0 22 44 66 88 11
0

13
2

15
4

17
6

19
8

22
0

24
2

26
4

28
6

30
8

33
0

35
2

37
4

39
6

41
8

44
0

46
2

48
4

50
6

Partition Number

N
um

be
r o

f B
en

t F
un

ct
io

ns

Figure 42 Bent function distribution, Random Map

Standard
deviation

Map A 22,204.96
Map B 19,339.71
Map C 22,204.96
Map D 17,993.37
Random 13,530.55

Table 26. Bent function standard deviation per partition

B. BITSTUFFING

From the weight property of bent functions, we know that a bent function has one

of two predetermined number of ones in it, for a given number of variables. Because of

this, we can construct a function with the appropriate number of ones in it, with the

miniscule hope that it is bent. This process shall be known as bitstuffing. Although there

are several properties of bent functions, that have not been discussed, that can improve

the probability construction of a bent function, this discussion will focus on the ROTS

functions.

 61

1. The Ones Hypothesis

Recall that there are eight 4-variable ROTS bent functions. Each of the eight sub-

tables of Table 27 represent all of the 4-variable bent functions that can be created from

the 4-variable ROTS bent functions by exclusive ORing a ROTS bent function with an

affine function. Note that the resulting function is bent, but not necessarily ROTS. The

first sub column represents a function that has been determined to be bent and ROTS

through a brute force enumeration of the search space. The second sub column is an

affine function. The final sub column is the result of the exclusive ORing of the

candidate ROTS bent function and that particular affine function.

Table 27. ROTS bent functions on 4n =

 62

This implies that a sieve can be easily constructed to help search for the bent

functions. Furthermore, this sieve can be constructed to target ROTS bent functions.

Suppose you have a function you would like to determine is bent. An initial step could

be to count the number of ones in it, and for the case of n=4, see if the answer is either 6

or 10. If this is not the case, then the function is not bent. If this is the case, then it may

be bent, but there is no guarantee that it is bent. The remainder of this discussion will

focus on the case of a bent function containing 6 ones.

The goal is to determine if a ROTS function has 6 ones. To start, the function that

maps the rotationally symmetric index (RSI) to the truth table must be examined. One

lab during EC4820 involved the creation of a C program that determined the rotationally

symmetric index function. This paper will only focus on those results. The below table

demonstrates how the 6-bit RSI is mapped into a 16-bit truth table.

To create the 16-bit number from the RSI, each of the 6-bits of the RSI is

examined one at a time. The RSI and the 16-bit truth table are formatted with the bits

laid down with the 0 bit being on the right. The value of the ith bit of the RSI is then

mapped into the 16-bit number according to the below table. This means that the value

of bits 8, 4, 2 and 1 in the expanded number are the same and equal to the value of bit 1

in the RSI.

Next, the number of ways to create a 16-bit number from the RSI was examined.

This was done via a histogram on the bin frequency of the RSI in an Excel spreadsheet.

Table 28 shows these results:

 63

Source bit Frequency

0 1

1 4

2 4

3 2

4 4

5 1

Table 28. RSI histogram, n=4

In this table, a value from each of the 6-bits in the RSI is used the number of

times listed in the frequency column. From this, it can be shown that there are six ways

to get a number with 6 ones. To get a number that has 6 ones in it, each source bit must

be set high until the frequency total is 6. Thus, the source bit combinations that are

required to get 6 ones is 015, 025, 045, 13, 23 and 34. However, since there are only 4

ROTS bent functions on 4n = , we know that 2 of them must be eliminated. Table 29

shows the 6 ways to get 6 ones in the 16-bit format. The two functions that are not bent

are highlighted in red. Because not all functions generated through this process are

ROTS bent function, it is only a sieve to construct ROTS bent functions.

In Table 29, the “selected source bit” column shows which bits in the RSI must be

high to get 6 ones in the 16-bit format. The next 4 columns labeled 15, 11, 7 and 3

represent each of the 4 nibbles in the 16-bit number. Each column is labeled according to

the MSB in each nibble. The final column is the 16-bit hexadecimal representation of the

number being constructed. The bolded red numbers indicate RS functions that have 6

ones but are not bent. This can easily be proved by finding an affine value that, when

exclusive ORed with the function, produces a result with less than 6 ones. For 0 9249x ,

the affine value is 0 9669x (20 9249 0 9669 0 0420 0000010000100000x x x⊕ = =) and is

determined through a brute force enumeration of the affine functions. For 0 1668x , the

 64

affine value is also 0 9669x (20 1668 0 9669 0 8001 1000000000000001x x x⊕ = =). The

bent functions are now known to be 0 536,0 6 0,0 8117 0 881x x CA x and xE through

enumeration.

 Binary representation

Selected source

bit 15 11 7 3
Hex format

015 1000 0001 0001 0111 8117

025 1001 0010 0100 1001 9249

045 1110 1000 1000 0001 E881

13 0000 0101 0011 0110 0536

23 0001 0110 0110 1000 1668

34 0110 1100 1010 0000 6CA0

Table 29. RSI functions with 6 ones

This same concept can be used to produce a sieve for larger cases of n. The case

implemented for this thesis was for n=6. This results in a 14-bit RSI being mapped into a

64-bit number. The RSI mapping function has been previously discussed under the guise

of the 28 pound packing problem discussed in III.B.

2. Execution of a GA on 6n =

The GA has been implemented on the SRC-6, as previously described in this

thesis. The results of the data trends from the SRC-6 are discussed below. As will be

described, different parameters of the GA were altered in order to see how the results

varied. However, for the sake of consistency throughout all of the experiments discussed,

the same set of seeds is used for the LFSRs. Additionally, all of the ROMs were

addressed in a sequential manner, versus the CRC addressing method previously

described.

 65

The following terms will be used throughout the discussion of the GA results.

Since the GA implements the ones’ count hypothesis, it is a sieve for bent functions.

What that means is that a “fit” chromosome from the GA, meaning it has the maximum

fitness value of 240, may be or may not be bent. The term “percent fit” describes how

many of the chromosomes out of all of the generations have a fitness of 240. If a

chromosome has a fitness value of 240, and its corresponding truth table is a bent

function, then it is referred to as a “chromosome yielding a bent function”. The “yield” is

the percentage of all chromosomes with a fitness of 240 whose TT yields a bent function.

Bent functions are only counted once regardless of how many times they generated

through the chromosomes, and are thus referred to as “unique”. Unless specified

otherwise, the minimum fitness value to prevent chromosome replacement is 150.

Several methods were used to implement the crosscode. Unless stated otherwise,

the crosscode of 0 1x F is used. This specifies the boundary between the bins

corresponding to a weight of 6, and all other bins. This is a single point crossover. Later,

two types of random crosscodes are tested. The first type is one that has the crossover

occur at one place within the chromosome. The other type allows for multiple crossover

points. In all cases, the same crosscode is used for all elements in a particular generation.

In some cases, described in detail later, each generation has its own crosscode.

The first set of tests shows effects of changing the minimum fitness value. There

are essentially three interesting things to look at in the results of when the minimum

fitness value is changed. The first is when the minimum fitness value is 0, the GA

behaves more like a GA in which new chromosomes are only introduced through

crossover. Conversely, when the minimum fitness value is 240 the GA behaves like a

brute force search, albeit with some “genetic” aspects to the brute force. Finally, the

remaining interesting point is where the GA seems to change its success rate. This first

set of tests was run under two generation lengths, 512 and 2,000. The former choice is

based on 16 chromosomes per generation for 512 generations yields 8,192 chromosomes

examined. This is half of the total chromosomes in the entire search space. The later

choice is an arbitrary larger value. Figure 43 shows the number of unique bent functions

found, while Figure 44 shows the number of chromosomes yielding a bent function.

 66

Effects of changing minimum fitness

10 10

7
6

2

6
7

9

12

17 17

20

17

15

17

20

22 22

0

5

10

15

20

25

0 30 60 90 120 150 180 210 240

Minimum fitness

Un
iq

ue
 B

en
t F

un
ct

io
ns

512 Generations 2000 Generations

Figure 43 Unique bent functions

Effects of changing minimum fitness

13 13
8 11

2

77

50 50

153
143 143

186
180

156

275

128

186

236

0

50

100

150

200

250

300

0 30 60 90 120 150 180 210 240

Minimum fitness

C
hr

om
os

om
es

 Y
ie

ld
in

g
Be

nt
 F

un
ct

io
ns

512 Generations 2000 Generations

Figure 44 Chromosomes yielding bent functions

 67

Of greatest interest here is the distinct jump in the number of chromosomes

yielding a bent function between the minimum fitness of 120 and 150 as seen on the 512

generation test. This result is also shown in Figures 45 and 46, which show the percent

fit and the yield for these tests. Because of these results, the minimum fitness of 150 was

chosen as the minimum fitness of subsequent testing.

Effects of changing minimum fitness

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

0 30 60 90 120 150 180 210 240

Minimum fitness

P
er

ce
nt

 fi
t

512 Generations 2000 Generations

Figure 45 Percent fit versus minimum fitness

 68

Effects of changing minimum fitness

0.00%

0.50%

1.00%

1.50%

2.00%

2.50%

3.00%

3.50%

0 30 60 90 120 150 180 210 240

Minimum fitness

Yi
el

d

512 Generations 2000 Generations

Figure 46 Yield versus minimum fitness

Figures 47 and 48 show the effect of changing the crossover point on the number

of chromosomes yielding bent functions, and also the number of unique bent functions

located. There are five sets of tests in this experiment, with each test running for 512

generations. The first test is the control test, with a crossover point of 0 1x F as described

with Figures 43-45. The second test uses a multi-point crossover with code 0 0xED .

Multi-point crossover means that instead of one point determining where the

chromosomes are split and recombined, there are several points. For example, the multi-

point crosscode 20 0 1110 _1101_ 0000xED = means that the bits 4, 6, 7, 9, 10 and 11

will crossover, where bit 0 is the LSB. The third test is a single point crossover with

crosscode 0 7x . These two crosscodes were used in all generations. The final two test

sets each have a unique crosscode for each generation. In the first case, the crosscode is a

multi-point, and in the last case, it is a single point crossover. The most obvious piece of

information gained from this set of experiments is that, with the current design of the

chromosome, and fitness function, the success of the GA is definitely dependant on the

 69

crossover code. This can be seen in two places. The first is on the case where the

minimum fitness value is 120. By the design of the fitness function, 120 is a key point

since it represents that 1 of the 2 subproblems has been “solved”. The other issue is the

randomly generated multi-point crosscode yields some interesting results when the

minimum fitness value is 150. The correlation between the crossover code and the

minimum fitness value appears to be dependant on the minimum fitness value. As it gets

higher, different crosscodes yield better results. This may be due to the GA starting to

resemble a brute force attack as the minimum fitness value approaches 240.

Effects of changing crossover point

0

2

4

6

8

10

12

0 30 60 90 120 150 180 210 240

Minimum fitness

Un
iq

ue
 b

en
t f

un
ct

io
ns

Code 31 Multi-point Single Pt, Random Multi-point, changing Single pt, changing

Figure 47 Effect on number of unique functions due to changing the crossover point

 70

Effects of changing crossover point

0

50

100

150

200

250

300

350

0 30 60 90 120 150 180 210 240

Minimum fitness

C
hr

om
os

om
es

 y
ie

ld
in

g
be

nt
 fu

nc
tio

ns

Code 31 Multi-point Single Pt, Random Multi-point, changing Single pt, changing

Figure 48 Effect on number of chromosomes yielding bent functions due to changing
crossover point

Figures 49 and 50 show the effect of changing the crossover point has on percent

fitness, and the percent yield. Overall, each of the crossover methods has a tendency to

yield more fit chromosomes as the minimum fitness value rises. The yield is somewhat

affected, although the values are too small to draw any definitive conclusions, with the

exception of a few data points that show a marked change in the performance of the

crossover point with respect to the minimum fitness value. The most notable points are

shown on Figure 50. The test single point change has its percent yield drop go from

4.77% to 0.73% as the minimum fitness changes from 90 to 120. On the multipoint test,

the yield goes from 0.62% to 8.87% to 0.53% as the minimum fitness value changes from

120 to 150 to 180.

 71

Effects of changing crossover point

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

0 30 60 90 120 150 180 210 240

Minimum fitness

Ch
ro

m
os

om
es

 w
ith

 m
ax

im
um

 fi
tn

es
s

Code 31 Multi-point Single Pt, Random Multi-point, changing Single pt, changing

Figure 49 Percent versus minimum fitness for a changing crosscode

 72

Effects of changing crossover point

0.00%

1.00%

2.00%

3.00%

4.00%

5.00%

6.00%

7.00%

8.00%

9.00%

10.00%

0 30 60 90 120 150 180 210 240

Minimum fitness

Yi
el

d

Code 31 Multi-point Single Pt, Random Multi-point, changing Single pt, changing

Figure 50 Yield versus minimum fitness for a changing crosscode

The final set of tests involves the effects of changing the number of generations.

Again, the original crosscode of 0 1x F is used. Three cases are examined for the

minimum fitness value. Again, the minimum fitness is varied in increments of 30 from 0

to 240. Figures 51 and 52 show some interesting results. The first is that the number of

unique bent functions becomes saturated very quickly. In essence, this “saturation” is

actually a limit indicating that all of the ROTS bent functions on 6n = that could be

found were found. That statement has its basis in the fact that this GA is only searching

 73

for ROTS functions that have 28 ones in it. This process will only locate half of the

ROTS bent functions, since only half of them have 28 ones in them. Their complements,

however, contain the other half of the ROTS bent functions on 6n = . This means that

for all cases, running the GA for more than 6,000 generations does not yield any

additional bent functions. Prior to that threshold, there is a linear relationship between

the number of unique bent functions and the number of generations. The number of

chromosome yielding bent functions behaves drastically differently, though. As the

number of generations increase, there is nearly a logarithmic rise in the number of

chromosomes yielding bent functions.

Effects of changing number of generations

0

5

10

15

20

25

30

512 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 15000 20000 25000 30000

Generations

Un
iq

ue
 B

en
t F

un
ct

io
ns

Minimum fitness 0 Minimum fitness 150 Minimum fitness 240

Figure 51 Unique bent functions versus changing generations

 74

Effects of changing number of generations

0

1000

2000

3000

4000

5000

6000

512 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 15000 20000 25000 30000

Generations

C
hr

om
os

om
es

 y
ie

ld
in

g
be

nt
 fu

nc
tio

ns

Minimum fitness 0 Minimum fitness 150 Minimum fitness 240

Figure 52 Chromosomes yielding bent functions versus changing generations

Figures 53 and 54 show the relationship between the percent fit and the yield. In

all cases for the percent fit, there is little change once 2,000 generations have elapsed.

There is an inverse relationship between the yield of the GA and the minimum fitness

value versus the number of generations. For example, when the minimum fitness value is

0, the yield grows as the number of generations grows. The converse is true for a

minimum fitness value of 240, as the number of generations grows, the yield diminishes.

This is due to the fact that with a minimum fitness value of 240 the GA starts to emulate

a brute force attack. However, since chromosomes are eliminated through selection, and

chromosomes that do not have a perfect fitness are also eliminated, this case actually

behaves worse than brute force. The yield for the minimum fitness value of 150 is

relatively unchanged.

 75

Effect of changing generations

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

512 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 15000 20000 25000 30000

Number of generations

Fi
t c

hr
om

os
om

es
 o

f t
ot

al

Minimum fitness 0 Minimum fitness 150 Minimum fitness 240

Figure 53 Percent fit versus number of generations

Effect of changing generations

0.00%

0.50%

1.00%

1.50%

2.00%

2.50%

3.00%

3.50%

512 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 15000 20000 25000 30000

Number of generations

Yi
el

d

Minimum fitness 0 Minimum fitness 150 Minimum fitness 240

Figure 54 Yield versus number of generations

Finally, a test was conducted to determine the effectiveness of crossover on

producing bent functions. This analysis is limited to the tests involving 512 generations.

As more generations elapse, the LFSRs produce the set of pseudorandom numbers that

rapidly covers the entire search space. This can be accomplished in as little as 1,024

generations if the LFSR seeds are strategically space, which they are not. Regardless, it

becomes extremely difficult to determine if a chromosome is the resultant of it being

generated by the LFSR, or by crossover.

 76

This process starts by storing all of the values that the LFSR will generate over

512 generations into a text file. This text file is then read, and its values are stored into a

C++ set data structure. This type of data structure can be viewed as a specialized vector

in which no two elements have the same value. It should be noted that the underlying

data structure in a set is probably not a vector; a vector is merely mentioned due to its

familiar nature. Next, the chromosomes with a fitness value of 240 are loaded into a

different set. Each element of the first set is searched for in the second set, and removed

if found. The elements remaining in the second set after this process are those that must

have been generated through crossover. It is possible that some fit chromosomes were

generated through crossover that were also generated by the LFSRs, and are thus being

masked. However, given the results of Figure 55, a sufficient number of fit

chromosomes are being generated through crossover that further investigation on the

success of crossover is not warranted.

Figure 55 shows the percentage of all fit chromosomes that could not have been

produced by the LFSRs during the run of 512 generation. This figure shows that

crossover is indeed being effectively used to generate fit chromosomes. To be specific,

fully 1
3 to 1

2 of the fit chromosomes came from crossover. Actually, it cannot be

determined if they came from crossover or mutation. However, by design, mutation is

already sufficiently rare and ineffective that its contribution can be neglected.

 77

Fit chromosomes found due to crossover

30.00%

35.00%

40.00%

45.00%

50.00%

55.00%

0 30 60 90 120 150 180 210 240

Minimum fitness

Fi
t c

hr
om

os
om

es
 fo

un
d

du
e

to
 c

ro
ss

ov
er

Code 31 Multi-point Single Pt, Random Multi-point, changing Single pt, changing

Figure 55 Fit chromosomes due to crossover

 78

C. ROTS SEED ON 4n =

To assist in reviewing the bent functions on 4n = , a computer program was

written that serves as a filter for the bent functions. The user is able to specify which of

the nibbles he wishes to examine, and those bent functions that meet that requirement are

shown. From this, it was observed that a given co-function exits numerous times across

all of the bent functions. To further process this information, another program was

written that specifically tallied all of the co-functions, and their respective frequency in

both the high and the low position. These results yielded an interesting observation.

There are 112 unique co-functions on 4n = . Each of those co-functions appears 16

times. From this it is hypothesized that bent functions of a certain number of variables

can be constructed using co-functions of the same number of variables.

After an extensive comparison of the co-functions with the affine functions, the

following algorithm is given to find bent functions on 4n = . It is proposed that this

algorithm be implemented to cover larger n .

First, all of the affine functions are loaded into a C++ set data structure. Next, all

of the given bent functions are loaded into a different set. The bent functions that exist

during the initial execution of this algorithm are known as the bent function seed. Later

discussion will show how ROTS bent functions are ideally suited for this process.

The set of bent functions is parsed, with each bent functions being broken into its

two component co-functions, with the high co-functions being logically shifted to the left

to align the co-functions. Each of those two co-functions are added to a co-function set.

Additionally, the bits of each co-function are reversed, and those new values are added to

the co-function set. For example, suppose the set contains the co-function

20 74 01110100x = . The number 20 2 0010 1110x E = is then added to the set.

Second, a nested loop is constructed. Each loop iterated through the entire

co-function set. While doing so, the current co-function from each loop is exclusive

ORed, and the resultant value is placed in a temporary co-function set. After the loop

completes, the temporary co-function set is merged with the original co-function set.

 79

Third, a set of proposed bent functions is produced using a manner similar to

construction of the temporary co-function set. Again, a nested loop is constructed with

each loop iterating through each member of the set. A proposed bent functions is

constructed by assigning the co-function in the outer loop as the high co-functions and

the inner loop as the low co-function.

Finally, the nonlinearity of the proposed bent functions is calculated, and a new

set of bent functions is produced. This new set of bent functions provides the input to the

aforementioned algorithm to again produce a set of functions to be tested for bentness.

This process was implemented using a Linux shell script.

Observation:

Only two functions are required to be in the seed, provided that they are both

ROTS and of a different A-class, in order to generate all 896 bent functions.

This can be accomplished in two iterations of the algorithm. Different

combinations of seeds were constructed utilizing a ROTS bent function and a bent

function of a different A-class. Although the combinations were not exhaustively

searched, it is observed that all 896 bent functions can be generated from a given pair of

seeds. Further iterations of the algorithm fail to produce additional bent functions.

In a sense, this is actually a genetic algorithm, albeit with the order of genetic

operations different from those previously discussed in this thesis. Consider each co-

function from the bent functions as the chromosomes. The operations of combining the

co-functions with themselves, and the affine functions, could be viewed as a form of

crossover. Survival of the fittest is mimicked through the nonlinearity calculation. When

the nonlinearity is determined, those functions that are not bent are removed from

consideration because they are not “fit”. Thus, in this case, “fitness” is determined by the

nonlinearity of the function. In this test the mutation operation is not implemented. Each

iteration of the algorithm is a generation. After a few number of generations, no

additional information is gained.

The nonlinearity distributions are shown in Tables 56 and 57 for 4n = . This is to

provide a comparison against the nonlinearity distributions of higher n .

 80

Nonlinearity, n=4

0

5000

10000

15000

20000

25000

30000

0 1 2 3 4 5 6

Nonlinearity

Fr
eq

ue
nc

y

Figure 56 Nonlinearity, 4n =

ROTS Nonlinearity, n=4

0

2

4

6

8

10

12

14

16

18

0 1 2 3 4 5 6

Nonlinearity

Fr
eq

ue
nc

y

Figure 57 ROTS nonlinearity, n=4

 81

D. BY DEGREE ON 6n =

As mentioned in IV.A.2, all of the bent functions were enumerated on 6n = from

the set of functions with degree 3 or 2. Figure 58 shows the graph for the nonlinearity

distribution observed from these functions. Figure 59 shows the nonlinearity distribution

for ROTS functions on 6n = . Of particular interest is that only the following

nonlinearities were observed: 0, 8, 12, 14, 16, 18, 20, 22, 24 and 28. The distributions

for nonlinearities of 0, 8, 12 and 14 are 1, 11,160, 1,749,888 and 22,855,680 respectively.

The remaining nonlinearity frequencies are so large that the previous nonlinearities are

not noticeable in the figure. Note that the two graphs share the same basic shape.

Nonlinearity by Degree, n=6

0

2000000000

4000000000

6000000000

8000000000

10000000000

12000000000

14000000000

16000000000

18000000000

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

Nonlinearity

Fr
eq

ue
nc

y

Figure 58 Nonlinearity by degree, 6n =

 82

ROTS Nonlinearity, n=6

0

500

1000

1500

2000

2500

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28

Nonlinearity

Fr
eq

ue
nc

y

Figure 59 ROTS nonlinearity, 6n =

E. ROTS ON 8n =

The ability to conduct a nonlinearity calculation on 8n = is hampered by the ever

growing size of the circuitry. In order to combat this, two optimization were made to the

basic design for the nonlinearity calculation on 6n = . The first was implementing the

complement optimization described in Chapter II. By doing so, this reduces the number

of nonlinearity values going into the minimization circuit by a factor of 2. This, however,

does not reduce the complexity of the circuitry to allow a timely compiling. To reduce

this complexity by another factor of 2, an additional control signal was provided to the

macro from subr.mc. This control signal controlled a two input multiplexer, whose

inputs were affine functions. To accommodate for the reduced data throughput in the

macro, subr.mc is required to make two calls to the macro.

Consider, for example, the need to count from 0 to 7, in binary. The proper

pattern would be 000, 001, 010, … 111. Now suppose you were to count from 0 to 7

again, however, this time you need to count each number twice. This can easily be

 83

accomplished by appending a counting bit to the original three bits. Thus, one is

essentially counting from 0 to 15, and using the three most significant bits to indicate the

number that is being counted.

A loop is normally used to provide the macro with sequential indices, or

sequential blocks of memory containing the functions to be tested. When the loop is

providing indices to the macro, it can easily be doubled using the above method. This

allows a smaller circuit to be placed on the FPGA, albeit at the expense of a slower

execution time. Care must be taken when doing this on three steps. The first is ensuring

that the index being sent to the macro in the slowed counter. Using the above example,

you would need to be sending the macro 000, 001, … 111 versus 0000, 0001, … 1111.

This can be accomplished by conducting a logical right shift by one bit. At the same

time, the macro also needs to receive the control signal for the multiplexer in the macro.

This can be accomplished by using a logical AND on a counter, and applying that

resultant to the macro. Finally, subr.mc needs to compare the nonlinearity value from the

most recent call to the macro, with the value from the previous call. The lesser of the two

values is chosen and used as the overall nonlinearity for the function under test.

As a result of the enumeration of the 362 ROTS functions on 8n = , the following

observations were made. 15,104 of the functions are bent, and they are equally divided

amongst 3,776 A-classes. That is, there are four ROTS bent functions in each of the

3,776 A-classes. The nonlinearity distribution of the bent functions is shown in Figure

60. Of the total number of ROTS functions, 52.20 10 %x − are bent. The distribution

contains all nonlinearities although those below 52 and above 116 are not visible due to

their small distribution.

 84

ROTS, n=8

0

500000000

1000000000

1500000000

2000000000

2500000000

3000000000

3500000000

4000000000

4500000000

1 8 15 22 29 36 43 50 57 64 71 78 85 92 99 106 113 120

Nonlinearity

Fr
eq

ue
nc

y

ROTS, n=8

Figure 60 ROTS nonlinearity distribution, 8n =

F. SUMMARY

This chapter discussed the various methods used to locate bent functions. It also

provides the reader with the necessary knowledge to understand the scarcity of bent

functions, and the need to restrict the search space as much as possible.

 85

V. SUMMARY

A. BENT FUNCTIONS

The method best used to find bent functions is based on the number of variables

that is being examined. Table 30 shows the scarcity of the bent function. It introduces a

new term called the concentration factor defined below:

#

#

bent in search space
sizeof search spacecf total bent
total search space

=

This value shows how changing the size of the search space, e.g. by restricting it to

ROTS functions or through searching by degree, the concentration of bent functions

becomes noticeably higher. This can become a means to determine which method should

be used to locate bent functions for a higher n .

Entire ROTS By degree Entire ROTS By degree Entire ROTS By degree
Search space 2^16 2^6 2^6 2^64 2^14 2^35 2^256 2^36 2^154

65536 64 64 1.84467E+19 16384 34359738368 1.15792E+77 68719476736 2.2836E+46
Total search
space 65536 65536 65536 1.84467E+19 1.84467E+19 1.84467E+19 1.15792E+77 1.15792E+77 1.15792E+77
bent fns 896 8 28 5425430528 48 42386768 9.92706E+31 15104 1.93888E+29
As 2^x 9.807354922 3 4.807354922 32.33709048 5.584962501 25.33711063 106.2911373 13.88264305 97.2911373
fraction bent /
search space 0.013671875 0.125 0.4375 2.94113E-10 0.002929688 0.001233617 8.57318E-46 2.19792E-07 8.49046E-18
As 2^x -6.19264508 -3 -1.19264508 -31.6629095 -8.4150375 -9.66288937 -149.708863 -22.117357 -56.7088627
fraction bent /
total search
space 0.013671875 0.00012207 0.000427246 2.94113E-10 2.60209E-18 2.29779E-12 8.57318E-46 1.30441E-73 1.67445E-48
As 2^x -6.19264508 -13 -11.1926451 -31.6629095 -58.4150375 -38.6628894 -149.708863 -242.117357 -158.708863
Concentration
factor 1 9.142857143 32 1 9961088.848 4194362.581 1 2.56372E+38 9.90352E+27
As 2^x 0 3.192645078 5 0 23.24787202 22.00002015 0 127.5915058 93

n=4 n=6 n=8

Table 30. Bent function scarcity, After [8]

B. GENETIC ALGORITMS

There is considerable potential in using GAs, and genetic based operations, in

order to find bent functions. The most interesting method used a ROTS seed to find bent

functions. When using the more traditional approach to GAs, one quarter (6 out of 24) of

the available bent functions were located. This is of interest considering that the GA had

 86

processed a total of 77 functions, some of them repeated due to the nature of the GA, that

were bent during this time frame. Careful design of the GA, and crosscode selection, will

help the GA locate bent functions more rapidly.

C. WHY RECONFIGURABLE COMPUTING

The primary advantage of reconfigurable computing is the ability to work in

parallel. Consider the sieving computation for bent functions on 6 variables. The

distance between each function and 128 affine functions must be computed. This can be

done in parallel. If the GA is applied to a population of 16 chromosomes at one time, this

can be considered as a parallel computation involving 16 separate processes acting

simultaneously. Despite the relatively few chromosomes in the population for this GA,

the reconfigurable computer operating at 100 MHz is quickly capable of outpacing a

general purpose computer operating at 2.8 GHz. This can be seen in Figure 61.

The FPGA based GA was translated into C++, and a comparison was conducted.

The C++ code was executed on the same CPU that is connected to the FPGA, a 32-bit 2.8

GHz Xeon processor. The C++ implementation includes two versions. The first does not

include the half-life and Order 67 logic (C++ simplified), while the second version (C++

full) does. The graph shows the number of CPU clock cycles required to run the GA for

a given number of generations. For example, the FPGA GA implementation requires

fewer clock cycles compared to C++ full when the number of generations exceeds

approximately 7,000. And, it requires fewer clock cycles compared to C++ simplified

version when the number of generations exceeds approximately 14,000.

This result can also be seen in Figure 62, which shows the accumulated CPU

clock cycles versus the generation. For example, at approximately 7,000 generations and

above, the FPGA GA requires fewer clock cycles than C++ full. At approximately

14,000 generations and above, the FPGA requires fewer clock cycles than C++

simplified. The reason that the FPGA curve is relatively flat is because the amount of

time it takes to run the GA is insignificant compared to the time required to execute the

other instructions. This is similar to the difference in time it takes to list a large amount

of files in Linux. For example, it takes considerably less time to list the files while

 87

redirecting the output to a file than to display them to the screen. The number of clock

cycles in all cases is determined by using the C “clock()” library function. Since this GA

is able to quickly locate fit functions due to the small search space, the FPGA

implementation of the GA may be better suited for a larger search space, meaning more

bits in the chromosome.

Speed Advantage of Reconfigurable Computing

0

100

200

300

400

500

600

700

800

900

1000

500 1000 5000 7500 10000 20000 30000

Number of Generations

Th
ou

sa
nd

s
of

 C
PU

 c
lo

ck
 c

yc
le

s
to

 ru
n

G
A

C++, simplified C++, full FPGA

Figure 61 Speed advantage of reconfigurable computing

 88

Generations per CPU Clock Cycle

0

50

100

150

200

250

300

350

400

450

500 1000 5000 7500 10000 20000 30000

Number of Generations

C
PU

 C
lo

ck
s

pe
r G

en
er

at
io

n

C++, simplified C++, full FPGA

Figure 62 Generations per CPU clock cycle

D. MEETING GOALS

The goal of this thesis was to determine if GAs are useful in finding bent

functions. This thesis shows that GAs are a useful tool to locate bent functions.

Furthermore, it shows that other genetic processes are useful for generating bent

functions from a given bent function. For the first time at NPS we have enumerated all

bent functions on 6n = and all ROTS bent functions on 8n = . Finally, it was discovered

that bent functions can be discovered in groups. This discovery may be useful in a future

GA searching for bent functions by degree.

E. FUTURE WORK

Through the course of this thesis several issues were discovered that warrant

additional research. This includes the grouping of index adjacent bent functions and

 89

generating bent functions for a ROTS seed. Finally, many sub-programs were created

that can be expanded and integrated to facilitate easier testing.

1 ROTS Seed

Additional testing should be done on the ROTS seed method of discovering bent

functions. The test should focus on what combinations are required to yield all bent

functions. Furthermore, analysis should be conducted on the mathematical properties of

the seed functions that yield all bent functions.

Furthermore, this experiment should be expanded to study functions of more

variables. It is proposed that the next case to be examined is 8n = since all bent

functions on 6n = have already been enumerated in this thesis. The addition of new A-

classes of bent functions will provide more research opportunities than revisiting

functions of fewer variables.

It is proposed that the ROTS seed algorithm be modified to allow searching for

bent functions in more variables. This can be accomplished by programming the co-

functions in a hexadecimal character string versus as an integer value. In this method,

co-functions can have their bits reversed by simply parsing the character string from the

null terminating character to the first character in the string. As each character is parsed,

its integer-based hexadecimal value can be computed, and corresponding reversed

hexadecimal value be determined through an array based table lookup. Similarly, when

two co-functions are exclusive ORed together, this can be done on a character by

character basis of their representative hexadecimal strings. Again, the integer based

values can be determined from each character. After the two values are exclusive ORed

together, the resulting value can be used as an index into a different lookup table to yield

the hexadecimal based character of the string. This is all easily accomplished in C++

using the Standard Template Library. Finally, the proposed bent function strings can be

printed to a text file which can then already be read by an existing bent function

calculator to determine the nonlinearity of the functions.

 90

2. By Bitstuffing on 10n =

It is proposed that a ROTS bent function can be created through a similar process

to the GA process on 6n = . For this case, there are 108 bits in the ROTS index. Of

these bins, 99 have a weight of 10. Since the goal is to create a function with 496 ones in

it, one of the primary ways to do that is to have 49 of these 99 bins selected, thus giving a

weight of 490. The remaining weight can then be evaluated through brute force

manipulation of the remaining bins. Building a ROTS index that has exactly 49 ones in it

can be done as follows. Create a data structure that has 99 elements in it. Initialize 49 of

the elements to a 1, with the remaining to 0. Shuffle the position of the elements through

some random process. If this process is to be implemented in C++ with the Standard

Template Library, the random_shuffle algorithm can be used to accomplish this. The

resulting list can then be converted into a couple of 64 bit numbers by iterating through

the list and performing the appropriate bitwise operations on the required variables. This

99 bit value is then processed by the FPGA along with the brute force manipulation of the

remaining bits, and the nonlinearity is computed.

In order to perform the nonlinearity calculation on 10n = , a method similar to

that used on 8n = can be used. In 8n = , which affine function that is going to be used is

controlled by a control line to a multiplexer. In 10n = , which has four times as many

bits in the TT, the number of controls lines becomes three. However, instead of a

multiplexer being used to store the affine function values, a ROM is instantiated that

contains all of the affine functions. It is instantiated 128 times. The value accessed by

the ROM is composed of two factors. The first is a constant corresponding to the ROM

number. For example, the first ROM would have seven of its address lines being tied to

the number 0. Likewise, the last ROM would have seven of its address lines tied to the

number 127. The remaining three address lines are provided from by the loop in the

subr.mc file. This gives the ROM the ability to access 1,024 different affine functions.

As with the case of 8n = , a “shortcut” is used that takes into consideration the

relationship that an affine function has with its complement on the nonlinearity of a

function.

 91

3. Rework on 6n =

The fitness function should be rewritten for 6n = to facilitate looking for GA

chromosomes that correspond to a ROTS function that has 36 ones instead of 28.

Another possibility is to include a version that searches for both conditions, and selects

the best case. This can be accomplished by first examining the flowchart created for the

current fitness function. The corresponding tables can be recomputed for the new set of

circumstances that will result in correctly answering the subproblems.

4. More Efficient Use of Memory Transfers

In order to transfer information between the microprocessor and the FPGAs, a

series of memory transfer protocols are used. Currently the algorithm is only using one

of the data paths between the two computers. This limits the number of generations that

can be run in one execution of the GA. Although this is not a factor in the current GA,

the ability to run it over more generations may become necessary in other problems.

Furthermore, the memory transfers can be sped up in a few places by utilizing different

striping patterns as discussed in the SRC-6 literature.

5. Calculators

Currently a series of calculators are used to send data from one portion of the

computation to another. For example, the GA is computed in one executable, and uses

input/output redirection to send its data to a text file. The text file is, in turn, read into a

different file that converts the chromosome into the normal ROTS index expression, and

then into its subsequent truth table. Finally, another program performs the nonlinearity

calculations on these truth tables. This cumbersome process is primarily hampered by the

need to read text data as a hexadecimal character string and convert it into its numerical

value. Furthermore, this is done in groups of eight before the data is passed to the FPGA.

This is drastically underutilizing the amount of bandwidth that exists between the

microprocessor and the FPGA. The decision to do this is based on the fact that 8 copies

of the nonlinearity calculation can be placed on the FPGA at one time. Thus to simplify

processing these calculations, the rest of the program was hindered.

 92

These calculators can be rewritten in at least two ways. The first is to send more

than 8 values to the FPGA for processing at one time. The most desirable solution would

be to combine all of the programs into a single project. In this method, would be

recommended for implementation only after all of the calculators are working

independently. This is based on the considerable amount of time it takes to compile each

of the separate programs. One variant of this would have several subr.mc files in the

Makefile, each calling their own calculator. Another version would incorporate all of the

calculators into one subr.mc file, and having a control signal from main.c determine

which calculator is to be used.

 93

APPENDIX A. STATEFUL MACROS SRC-6

Of interest in this research is the case of a “stateful” macro. As previously

mentioned, there are several different possible flags that can be set. One of these flags

makes the macro stateful. This is the method that the SRC-6 designers created to

implement macros that would retain their state from one iteration of a FOR loop to the

next. In order to prevent the macro from continuing to execute when it should not be

executing, additional control signals are made to this macro. The different ways to

control these signals is beyond the scope of this research. Only their functional result is

of interest.

The three control signals that must be implemented for stateful macros are

CLEAR, VALID and ITERATION (or ITER). The CLEAR signal would most often be

set as a conditional expression in the macro call. An example is when a macro is called

for the first time. In this case, the values in the registers should be initialized. Thus, the

programmer would control that through the macro call with a conditional expression such

as:

my_macro(times==0, in, &out);

In this case, a FOR loop increments the variable times, and when times is 0

(normally during the first execution of the loop), the clear signal is generated and sent to

the macro.

The ITER signal is used to ensure that the macro is only processing data once

during the iteration of the FOR loop. Various stores to memory might cause the loop to

be “slowed down.” Loop slow down becomes an issue when several memory writes are

required to the same memory bank. When a loop is slowed down, the ITER signal

prevents operation of the macro while the FOR loop is processing other lines of code

within the FOR loop. The VALID signal only remains high during the time that the

macro is being executed.

The final signal, ITER, is used when the number of clocks per iteration of a loop

is greater than one. This allows for providing a pulse that is automatically generated once

 94

per iteration. By doing so, an incrementer could be programmed such that it will only

increment once per loop iteration. This signal, along with the VALID signal, is useful for

creating enable flip-flops.

Figure 62 is taken from [15] to provide a graphical representation of these signals

during execution of a stateful macro.

Figure 63 Stateful macro timing diagram, From [15]

 95

APPENDIX B. SRC-6 LESSONS LEARNED

A. MACROS IN A LOOP

When a “function” call is made to a macro, it looks like any other function call

made in C. In discussions with Jeff Hammes of SRC Computers, new information was

learned about the behavior between the C portion of the code and user defined macros.

In a conventional C program, when a function call is made, the appropriate registers are

loaded and a jump is executed to the specified portion of memory that contains the

function code. This is not the same on the SRC-6 when a function call to a macro is

made. Conceptually, each call to a macro is laid down on the FPGA separately. This

means that if you have two macro calls, one circuit will be placed on one part of the

FPGA, while an identical circuit will be placed at a different part. Now, consider the

case where the C code makes a function call from within a FOR loop. Other looping

methods can be used to accomplish this. But, for the sake of brevity, only the FOR loop

will be discussed. In this case, only one circuit is placed on the FPGA. When the C code

is compiled onto the FPGA, the FOR loop is then translated into a machine which sends

control signals to the one instance of the macro. This became of interest to this research,

since the concept of feedback is necessary for the implementation of the genetic

algorithm. It is because of this property that the value in a register stored at the end of

iteration of a loop will still be present during the next iteration of the loop. This in effect

creates a stateful macro, although without the normal control signals associated with a

stateful macro.

B. TIMER ACCESS

The initial idea to provide a random source for ROM address in the macro was to

use the timer in the subr.mc file. This is not possible since a call to the timer function

made inside a loop will disable loop pipelining. By doing this, the GA macro cannot be

made stateful, which the current implementation of the GA requires. Since that is a

 96

considerable undertaking, the decision was made to create random element in the main.c

file, and then allow incrimination along with the CRC function to provide the random

access to the ROMs.

C. MAKEFILE OPTIONS

An attempt was made to change the mode of operation of the GA in which the

latency of the GA was changed to 1, vice the normal 17. In doing so, a new problem

would be computed each clock cycle until the feedback brings the old values back to the

input. When the normal version of the circuit was implemented, it was always possible

to meet the 100.0 MHz timing requirement for the SRC-6. However, changing the

latency of the circuit to 1 caused the frequency to drop to 90.8 MHz. After consulting the

Xilinx place and route and mapping documentation, options were found that when used

sped up the circuit. Table 31 shows the various options that were used and the resulting

frequency achieved.

Slowed version of circuit – baseline 100.0 MHz
Fast 90.8 MHz
Utilizing MAP E 92.8 MHz
-timing option 94.0 MHz
Removing “extra” inputs, extra fanouts 100.0 MHz

Table 31. Place and route and mapping options

Normally the microprocessor portion of the program is contained within a file

called main.c. However, in order to use some more advanced programming techniques it

is desired that C++ be used. In order to accomplish this, two things must be changed.

First, the main.c needs to be renamed to main.cc. Second, in the makefile, the linker

option needs to be set as follows: LD = icpc.

 97

APPENDIX C. AUXILIARY PROGRAMS

A. INFOER

In order to help produce this project several other side programs were created in

C++. The following is a brief description of them. The first is a program called “infoer”.

It parses the input Verilog macro and automatically generated the interface files that are

required for the C FPGA code to be able to call a user defined macro.

B. CODER

The next program is entitled “coder”. It parses a user input string to produce

code. This is helpful in many instances that would normally require repetitive typing. A

simple example of this would be in the C portion of the FPGA code. Many times 16

variables need to be passed to and from the Verilog macro. The coder makes it possible

to type the following line to produce 16 lines of code that would assign a variable to an

element in an array:

!0:15 in%d=IN[%d];\n!

The resultant code that is generated would be:

in0=IN[0]; , in1=IN[1];

and so forth. This has an advantage over the Verilog generate statement. For example,

compiling the transeunt triangle for 9n > was not possible since it uses generate

statements, and an out of memory error is eventually reached. However, if the transeunt

triangle code for 10n = will compile if the generate statements are replaced with the

actual lines of code that are to be generated.

C. VERILOG GENERATOR

The next program that was created is called Verilog Generator. It has been

expanded from previous projects to include generating the ROMs discussed in this

project. This is important because it allows creating new ROMs with either different

 98

words, or more words. It also contains the code necessary to implement the CRC

circuitry. Finally, a Verilog standard library was created. This library contains various

types of flip-flops, e.g. those with an enable, set, reset, and multiplexors that were used.

This proved useful for the times that it is more practical to use structural Verilog versus

behavioral.

 99

APPENDIX D. GA CODE

module CRC_table_rom(adr, val);

 //Creates a CRC-32 lookup table

 input [7:0] adr;

 output [31:0] val;

 reg [31:0] val;

 always @(adr)

 case (adr)

 0: val = 32'h00000000;

 1: val = 32'h77073096;

 2: val = 32'hee0e612c;

 3: val = 32'h990951ba;

 4: val = 32'h076dc419;

 5: val = 32'h706af48f;

 6: val = 32'he963a535;

 7: val = 32'h9e6495a3;

 8: val = 32'h0edb8832;

 9: val = 32'h79dcb8a4;

 10: val = 32'he0d5e91e;

 11: val = 32'h97d2d988;

 12: val = 32'h09b64c2b;

 13: val = 32'h7eb17cbd;

 14: val = 32'he7b82d07;

 15: val = 32'h90bf1d91;

 16: val = 32'h1db71064;

 17: val = 32'h6ab020f2;

 18: val = 32'hf3b97148;

 19: val = 32'h84be41de;

 20: val = 32'h1adad47d;

 21: val = 32'h6ddde4eb;

 22: val = 32'hf4d4b551;

 23: val = 32'h83d385c7;

 24: val = 32'h136c9856;

 25: val = 32'h646ba8c0;

 26: val = 32'hfd62f97a;

 27: val = 32'h8a65c9ec;

 28: val = 32'h14015c4f;

 29: val = 32'h63066cd9;

 30: val = 32'hfa0f3d63;

 31: val = 32'h8d080df5;

 100

 32: val = 32'h3b6e20c8;

 33: val = 32'h4c69105e;

 34: val = 32'hd56041e4;

 35: val = 32'ha2677172;

 36: val = 32'h3c03e4d1;

 37: val = 32'h4b04d447;

 38: val = 32'hd20d85fd;

 39: val = 32'ha50ab56b;

 40: val = 32'h35b5a8fa;

 41: val = 32'h42b2986c;

 42: val = 32'hdbbbc9d6;

 43: val = 32'hacbcf940;

 44: val = 32'h32d86ce3;

 45: val = 32'h45df5c75;

 46: val = 32'hdcd60dcf;

 47: val = 32'habd13d59;

 48: val = 32'h26d930ac;

 49: val = 32'h51de003a;

 50: val = 32'hc8d75180;

 51: val = 32'hbfd06116;

 52: val = 32'h21b4f4b5;

 53: val = 32'h56b3c423;

 54: val = 32'hcfba9599;

 55: val = 32'hb8bda50f;

 56: val = 32'h2802b89e;

 57: val = 32'h5f058808;

 58: val = 32'hc60cd9b2;

 59: val = 32'hb10be924;

 60: val = 32'h2f6f7c87;

 61: val = 32'h58684c11;

 62: val = 32'hc1611dab;

 63: val = 32'hb6662d3d;

 64: val = 32'h76dc4190;

 65: val = 32'h01db7106;

 66: val = 32'h98d220bc;

 67: val = 32'hefd5102a;

 68: val = 32'h71b18589;

 69: val = 32'h06b6b51f;

 70: val = 32'h9fbfe4a5;

 71: val = 32'he8b8d433;

 72: val = 32'h7807c9a2;

 73: val = 32'h0f00f934;

 101

 74: val = 32'h9609a88e;

 75: val = 32'he10e9818;

 76: val = 32'h7f6a0dbb;

 77: val = 32'h086d3d2d;

 78: val = 32'h91646c97;

 79: val = 32'he6635c01;

 80: val = 32'h6b6b51f4;

 81: val = 32'h1c6c6162;

 82: val = 32'h856530d8;

 83: val = 32'hf262004e;

 84: val = 32'h6c0695ed;

 85: val = 32'h1b01a57b;

 86: val = 32'h8208f4c1;

 87: val = 32'hf50fc457;

 88: val = 32'h65b0d9c6;

 89: val = 32'h12b7e950;

 90: val = 32'h8bbeb8ea;

 91: val = 32'hfcb9887c;

 92: val = 32'h62dd1ddf;

 93: val = 32'h15da2d49;

 94: val = 32'h8cd37cf3;

 95: val = 32'hfbd44c65;

 96: val = 32'h4db26158;

 97: val = 32'h3ab551ce;

 98: val = 32'ha3bc0074;

 99: val = 32'hd4bb30e2;

 100: val = 32'h4adfa541;

 101: val = 32'h3dd895d7;

 102: val = 32'ha4d1c46d;

 103: val = 32'hd3d6f4fb;

 104: val = 32'h4369e96a;

 105: val = 32'h346ed9fc;

 106: val = 32'had678846;

 107: val = 32'hda60b8d0;

 108: val = 32'h44042d73;

 109: val = 32'h33031de5;

 110: val = 32'haa0a4c5f;

 111: val = 32'hdd0d7cc9;

 112: val = 32'h5005713c;

 113: val = 32'h270241aa;

 114: val = 32'hbe0b1010;

 115: val = 32'hc90c2086;

 102

 116: val = 32'h5768b525;

 117: val = 32'h206f85b3;

 118: val = 32'hb966d409;

 119: val = 32'hce61e49f;

 120: val = 32'h5edef90e;

 121: val = 32'h29d9c998;

 122: val = 32'hb0d09822;

 123: val = 32'hc7d7a8b4;

 124: val = 32'h59b33d17;

 125: val = 32'h2eb40d81;

 126: val = 32'hb7bd5c3b;

 127: val = 32'hc0ba6cad;

 128: val = 32'hedb88320;

 129: val = 32'h9abfb3b6;

 130: val = 32'h03b6e20c;

 131: val = 32'h74b1d29a;

 132: val = 32'head54739;

 133: val = 32'h9dd277af;

 134: val = 32'h04db2615;

 135: val = 32'h73dc1683;

 136: val = 32'he3630b12;

 137: val = 32'h94643b84;

 138: val = 32'h0d6d6a3e;

 139: val = 32'h7a6a5aa8;

 140: val = 32'he40ecf0b;

 141: val = 32'h9309ff9d;

 142: val = 32'h0a00ae27;

 143: val = 32'h7d079eb1;

 144: val = 32'hf00f9344;

 145: val = 32'h8708a3d2;

 146: val = 32'h1e01f268;

 147: val = 32'h6906c2fe;

 148: val = 32'hf762575d;

 149: val = 32'h806567cb;

 150: val = 32'h196c3671;

 151: val = 32'h6e6b06e7;

 152: val = 32'hfed41b76;

 153: val = 32'h89d32be0;

 154: val = 32'h10da7a5a;

 155: val = 32'h67dd4acc;

 156: val = 32'hf9b9df6f;

 157: val = 32'h8ebeeff9;

 103

 158: val = 32'h17b7be43;

 159: val = 32'h60b08ed5;

 160: val = 32'hd6d6a3e8;

 161: val = 32'ha1d1937e;

 162: val = 32'h38d8c2c4;

 163: val = 32'h4fdff252;

 164: val = 32'hd1bb67f1;

 165: val = 32'ha6bc5767;

 166: val = 32'h3fb506dd;

 167: val = 32'h48b2364b;

 168: val = 32'hd80d2bda;

 169: val = 32'haf0a1b4c;

 170: val = 32'h36034af6;

 171: val = 32'h41047a60;

 172: val = 32'hdf60efc3;

 173: val = 32'ha867df55;

 174: val = 32'h316e8eef;

 175: val = 32'h4669be79;

 176: val = 32'hcb61b38c;

 177: val = 32'hbc66831a;

 178: val = 32'h256fd2a0;

 179: val = 32'h5268e236;

 180: val = 32'hcc0c7795;

 181: val = 32'hbb0b4703;

 182: val = 32'h220216b9;

 183: val = 32'h5505262f;

 184: val = 32'hc5ba3bbe;

 185: val = 32'hb2bd0b28;

 186: val = 32'h2bb45a92;

 187: val = 32'h5cb36a04;

 188: val = 32'hc2d7ffa7;

 189: val = 32'hb5d0cf31;

 190: val = 32'h2cd99e8b;

 191: val = 32'h5bdeae1d;

 192: val = 32'h9b64c2b0;

 193: val = 32'hec63f226;

 194: val = 32'h756aa39c;

 195: val = 32'h026d930a;

 196: val = 32'h9c0906a9;

 197: val = 32'heb0e363f;

 198: val = 32'h72076785;

 199: val = 32'h05005713;

 104

 200: val = 32'h95bf4a82;

 201: val = 32'he2b87a14;

 202: val = 32'h7bb12bae;

 203: val = 32'h0cb61b38;

 204: val = 32'h92d28e9b;

 205: val = 32'he5d5be0d;

 206: val = 32'h7cdcefb7;

 207: val = 32'h0bdbdf21;

 208: val = 32'h86d3d2d4;

 209: val = 32'hf1d4e242;

 210: val = 32'h68ddb3f8;

 211: val = 32'h1fda836e;

 212: val = 32'h81be16cd;

 213: val = 32'hf6b9265b;

 214: val = 32'h6fb077e1;

 215: val = 32'h18b74777;

 216: val = 32'h88085ae6;

 217: val = 32'hff0f6a70;

 218: val = 32'h66063bca;

 219: val = 32'h11010b5c;

 220: val = 32'h8f659eff;

 221: val = 32'hf862ae69;

 222: val = 32'h616bffd3;

 223: val = 32'h166ccf45;

 224: val = 32'ha00ae278;

 225: val = 32'hd70dd2ee;

 226: val = 32'h4e048354;

 227: val = 32'h3903b3c2;

 228: val = 32'ha7672661;

 229: val = 32'hd06016f7;

 230: val = 32'h4969474d;

 231: val = 32'h3e6e77db;

 232: val = 32'haed16a4a;

 233: val = 32'hd9d65adc;

 234: val = 32'h40df0b66;

 235: val = 32'h37d83bf0;

 236: val = 32'ha9bcae53;

 237: val = 32'hdebb9ec5;

 238: val = 32'h47b2cf7f;

 239: val = 32'h30b5ffe9;

 240: val = 32'hbdbdf21c;

 241: val = 32'hcabac28a;

 105

 242: val = 32'h53b39330;

 243: val = 32'h24b4a3a6;

 244: val = 32'hbad03605;

 245: val = 32'hcdd70693;

 246: val = 32'h54de5729;

 247: val = 32'h23d967bf;

 248: val = 32'hb3667a2e;

 249: val = 32'hc4614ab8;

 250: val = 32'h5d681b02;

 251: val = 32'h2a6f2b94;

 252: val = 32'hb40bbe37;

 253: val = 32'hc30c8ea1;

 254: val = 32'h5a05df1b;

 255: val = 32'h2d02ef8d;

 default: val=32'h0;

 endcase

endmodule

module CRC_calc(in, val);

//module CRC_calc(A, B, C, D, val);

 input [31:0] in;

 //input [7:0] A, B, C, D;

 output [31:0] val;

 wire [31:0] val;

 wire [31:0] regA, regB, regC, regD;

 wire [31:0] topA, topB, topC, topD;

 //CRC_table_rom tA(8'hff^A, topA);

 CRC_table_rom tA(8'hff^in[31:24], topA);

 assign regA= 32'h00ffffff ^ topA;

 //CRC_table_rom tB(regA[7:0] ^ B, topB);

 CRC_table_rom tB(regA[7:0] ^ in[23:16], topB);

 assign regB= {8'h00, regA[31:8]}^ topB;

 //CRC_table_rom tC(regB[7:0] ^ C, topC);

 CRC_table_rom tC(regB[7:0] ^ in[15:8], topC);

 assign regC= {8'h00, regB[31:8]}^ topC;

 //CRC_table_rom tD(regC[7:0] ^ D, topD);

 CRC_table_rom tD(regC[7:0] ^ in[7:0], topD);

 assign regD= {8'h00, regC[31:8]}^ topD;

 106

 assign val= regD^ 32'hffffffff;

endmodule

module OC (TT, Count);

 input[3:0] TT;

 output[2:0] Count;

 wire [2:0] Count;

 assign Count[0]=TT[3]^TT[2]^TT[1]^TT[0];

 assign
Count[1]=(TT[3]&TT[2]|TT[3]&TT[1]|TT[3]&TT[0]|TT[2]&TT[1]|TT[2]&TT[0]|TT[1]&TT[0])&~(TT[3
]&TT[2]&TT[1]&TT[0]);

 assign Count[2]=TT[3]&TT[2]&TT[1]&TT[0];

endmodule

module ones64(TT, VALID, RESET, ITER, CLK, count, timer, crcv);

 input [63:0] TT;

 input VALID, RESET, ITER;

 input CLK;

 output [6:0] count;

 reg [6:0] count;

 output [63:0] timer;

 reg [63:0] timer;

 output [31:0] crcv;

 reg [31:0] crcv;

 reg [63:0] d1;

 wire [31:0] w1, w2;

 reg [4:0] counta, countb, countc, countd;

 wire [2:0] count0, count1, count2, count3, count4, count5, count6, count7,
count8, count9, count10, count11, count12, count13, count14, count15;

 CRC_calc cc(TT[31:0], w1);

 dff_eNB ff(w1, VALID&ITER, CLK, w2);

 OC o0(TT[3:0], count0);

 OC o1(TT[7:4], count1);

 OC o2(TT[11:8], count2);

 OC o3(TT[15:12], count3);

 OC o4(TT[19:16], count4);

 OC o5(TT[23:20], count5);

 OC o6(TT[27:24], count6);

 107

 OC o7(TT[31:28], count7);

 OC o8(TT[35:32], count8);

 OC o9(TT[39:36], count9);

 OC o10(TT[43:40], count10);

 OC o11(TT[47:44], count11);

 OC o12(TT[51:48], count12);

 OC o13(TT[55:52], count13);

 OC o14(TT[59:56], count14);

 OC o15(TT[63:60], count15);

 always @(posedge CLK)

 begin

 counta <=count0+count1+count2+count3;

 countb <=+count4+count5+count6+count7;

 countc <=count8+count9+count10+count11;

 countd <=count12+count13+count14+count15;

 count <=counta+countb+countc+countd;

 d1 <= TT;

 timer <= d1;

 crcv <= w2;

 end

endmodule

module dff_NB(d, CLK, q);

 parameter n=16;

 input [n-1:0] d;

 input CLK;

 output [n-1:0] q;

 reg [n-1:0] q;

 always @(posedge CLK)

 q <= d;

endmodule

module oc5(TT, out);

 input [4:0] TT;

 output [2:0] out;

 reg [2:0] out;

 wire [2:0] val;

 oc4 moc4(TT[3:0], val);

 108

 always @(TT, val)

 out <= val + TT[4];

endmodule

module oc4 (TT, Count);

 input[3:0] TT;

 output[2:0] Count;

 wire [2:0] Count;

 assign Count[0]=TT[3]^TT[2]^TT[1]^TT[0];

 assign
Count[1]=(TT[3]&TT[2]|TT[3]&TT[1]|TT[3]&TT[0]|TT[2]&TT[1]|TT[2]&TT[0]|TT[1]&TT[0])&~(TT[3
]&TT[2]&TT[1]&TT[0]);

 assign Count[2]=TT[3]&TT[2]&TT[1]&TT[0];

endmodule

module fit6(TT, CLK, z);

 parameter wid_fit=8;

 parameter wid_TT=14;

 input [wid_TT-1:0] TT;

 input CLK;

 output [wid_fit+wid_TT-1:0] z;

 reg [wid_fit+wid_TT-1:0] z;

 reg [wid_fit-1:0] zd;

 wire [2:0] ones6a, ones6b, ones3, ones2, ones1;

 wire [2:0] ones6ad, ones6bd, ones3d, ones2d, ones1d;

 reg [7:0] ones6;

 reg [7:0] val6, val3, val2, val1;

 reg [wid_TT-1:0] r1_TT;//, r2_TT;

 oc5 moc6a(TT[13:9], ones6ad);

 oc4 moc6b(TT[8:5], ones6bd);

 oc4 moc3({2'b00, TT[4:3]}, ones3d);

 oc4 moc2({3'b000, TT[2]}, ones2d);

 oc4 moc1({2'b0, TT[1:0]}, ones1d);

 defparam f6a.n=3;

 dff_NB f6a(ones6ad, CLK, ones6a);

 defparam f6b.n=3;

 dff_NB f6b(ones6bd, CLK, ones6b);

 defparam f3.n=3;

 dff_NB f3(ones3d, CLK, ones3);

 defparam f2.n=3;

 109

 dff_NB f2(ones2d, CLK, ones2);

 defparam f1.n=3;

 dff_NB f1(ones1d, CLK, ones1);

 always @(posedge CLK)

 begin

 r1_TT <= TT;

 z[wid_fit+wid_TT-1:wid_fit] <= r1_TT;

 z[wid_fit-1:0] <= zd;

 end

 always @(ones6a, ones6b)

 ones6 <= ones6a + ones6b;

 always @(ones6, ones3, ones2, ones1)

 begin

 case (ones6)

 3: begin

 val6 <= 60;

 case (ones3)

 0: val3 <=0;

 1: val3 <=30;

 2: val3 <=60;

 default: val3 <=0;

 endcase

 case (ones2)

 0: val2 <=0;

 1: val2 <=60;

 default: val2 <=0;

 endcase

 case (ones1)

 0: val1 <=0;

 1: val1 <=30;

 2: val1 <=60;

 default: val1 <=0;

 endcase

 end

 4: begin

 val6 <= 80;

 if (ones2==1)

 begin

 val3 <=0;

 110

 val2 <=80;

 case (ones1)

 0: val1 <=0;

 1: val1 <=40;

 2: val1 <=80;

 default: val1
<=0;

 endcase

 end

 else

 begin

 val3 <=80;

 val2 <=0;

 if (ones1==1)

 val1 <=80;

 else

 val1 <=0;

 end

 end

 default: begin

 case (ones6)

 0: val6 <=0;

 1: val6 <=10;

 2: val6 <=20;

 5: val6 <=30;

 6: val6 <=40;

 7: val6 <=30;

 8: val6 <=20;

 9: val6 <=10;

 default: val6 <=0;

 endcase

 case (ones3)

 0: val3 <=15;

 1: val3 <=60;

 2: val3 <=15;

 default: val3 <=0;

 endcase

 case (ones2)

 0: val2 <=60;

 1: val2 <=15;

 default: val2 <=0;

 endcase

 111

 case (ones1)

 0: val1 <=15;

 1: val1 <=60;

 2: val1 <=15;

 default: val1 <=0;

 endcase

 end

 endcase

 zd = val6+val3+val2+val1;

 end

endmodule

module dff_cse(d, CLR, SET, EN, CLK, q);

 input d, CLR, SET, EN, CLK;

 output q;

 reg q;

 always @(posedge CLR or posedge SET or posedge CLK)

 if (CLR)

 q<=1'b0;

 else if (SET)

 q<=1'b1;

 else if (EN)

 q<=d;

endmodule

module LFSR(CLR, SET, EN, CLK, q);

 parameter n=6;

 //parameter taps=4;

 //Parameter n corresponds to the number of bits in the LFSR

 //Each of the tapX parameters directly corresponds to the maximal tap

 //as shown in Table 3.8 of Dixon

 //In order to properly use the LFSR, the register must first be
initialized with the CLR and SET inputs

 //The value in SET is the first value stored in the register

 //The value of CLR must be the NOT of SET

 //SET and CLR must be LOW after initialization for the LFSR to sequence

 112

 parameter tap0=0;

 parameter tap1=0;

 parameter tap2=0;

 parameter tap3=0;

 input [n-1:0] CLR, SET;

 input EN, CLK;

 output [n-1:0] q;

 wire [n-1:0] q;

 wire inwire;

 assign inwire = q[tap0]^q[tap1]^q[tap2]^q[tap3];

 dff_cse ff0(inwire, CLR[0], SET[0], EN, CLK, q[0]);

 genvar k;

 generate

 for (k=1; k<n; k=k+1)

 begin: ea_ff

 dff_cse ff(q[k-1], CLR[k], SET[k], EN, CLK, q[k]);

 end

 endgenerate

endmodule

module lfsrs(rnd0, rnd1, rnd2, rnd3, rnd4, rnd5, rnd6, rnd7, rnd8, rnd9, rnd10,
rnd11, rnd12, rnd13, rnd14, rnd15, CLR, VALID, ITER, CLK, w_rng0, w_rng1, w_rng2, w_rng3,
w_rng4, w_rng5, w_rng6, w_rng7, w_rng8, w_rng9, w_rng10, w_rng11, w_rng12, w_rng13,
w_rng14, w_rng15);

 //previous is the 14-bit string from the last generation

 //next is the 22-bit string of {14-bit chromosome, 8-bit fitness value}

 parameter n=14;

 parameter AAA=13;

 parameter BBB=4;

 parameter CCC=2;

 parameter DDD=0;

 input [n-1:0] rnd0, rnd1, rnd2, rnd3, rnd4, rnd5, rnd6, rnd7, rnd8, rnd9,
rnd10, rnd11, rnd12, rnd13, rnd14, rnd15;

 input CLR, VALID, ITER, CLK;

 output [n-1:0] w_rng0, w_rng1, w_rng2, w_rng3, w_rng4, w_rng5, w_rng6,
w_rng7, w_rng8, w_rng9, w_rng10, w_rng11, w_rng12, w_rng13, w_rng14, w_rng15;

 wire [n-1:0] w_rng0, w_rng1, w_rng2, w_rng3, w_rng4, w_rng5, w_rng6,
w_rng7, w_rng8, w_rng9, w_rng10, w_rng11, w_rng12, w_rng13, w_rng14, w_rng15;

 113

 wire [n-1:0] clears [15:0];

 wire [n-1:0] sets [15:0];

 assign sets[0]=rnd0;

 assign sets[1]=rnd1;

 assign sets[2]=rnd2;

 assign sets[3]=rnd3;

 assign sets[4]=rnd4;

 assign sets[5]=rnd5;

 assign sets[6]=rnd6;

 assign sets[7]=rnd7;

 assign sets[8]=rnd8;

 assign sets[9]=rnd9;

 assign sets[10]=rnd10;

 assign sets[11]=rnd11;

 assign sets[12]=rnd12;

 assign sets[13]=rnd13;

 assign sets[14]=rnd14;

 assign sets[15]=rnd15;

 assign clears[0]=~sets[0];

 assign clears[1]=~sets[1];

 assign clears[2]=~sets[2];

 assign clears[3]=~sets[3];

 assign clears[4]=~sets[4];

 assign clears[5]=~sets[5];

 assign clears[6]=~sets[6];

 assign clears[7]=~sets[7];

 assign clears[8]=~sets[8];

 assign clears[9]=~sets[9];

 assign clears[10]=~sets[10];

 assign clears[11]=~sets[11];

 assign clears[12]=~sets[12];

 assign clears[13]=~sets[13];

 assign clears[14]=~sets[14];

 assign clears[15]=~sets[15];

 defparam rng0.n=14;

 defparam rng0.tap0=AAA;

 defparam rng0.tap1=BBB;

 defparam rng0.tap2=CCC;

 defparam rng0.tap3=DDD;

 114

 LFSR rng0(clears[0]&{14{CLR}}, sets[0]&{14{CLR}}, VALID&ITER, CLK,
w_rng0[13:0]);

 defparam rng1.n=14;

 defparam rng1.tap0=AAA;

 defparam rng1.tap1=BBB;

 defparam rng1.tap2=CCC;

 defparam rng1.tap3=DDD;

 LFSR rng1(clears[1]&{14{CLR}}, sets[1]&{14{CLR}}, VALID&ITER, CLK,
w_rng1[13:0]);

 defparam rng2.n=14;

 defparam rng2.tap0=AAA;

 defparam rng2.tap1=BBB;

 defparam rng2.tap2=CCC;

 defparam rng2.tap3=DDD;

 LFSR rng2(clears[2]&{14{CLR}}, sets[2]&{14{CLR}}, VALID&ITER, CLK,
w_rng2[13:0]);

 defparam rng3.n=14;

 defparam rng3.tap0=AAA;

 defparam rng3.tap1=BBB;

 defparam rng3.tap2=CCC;

 defparam rng3.tap3=DDD;

 LFSR rng3(clears[3]&{14{CLR}}, sets[3]&{14{CLR}}, VALID&ITER, CLK,
w_rng3[13:0]);

 defparam rng4.n=14;

 defparam rng4.tap0=AAA;

 defparam rng4.tap1=BBB;

 defparam rng4.tap2=CCC;

 defparam rng4.tap3=DDD;

 LFSR rng4(clears[4]&{14{CLR}}, sets[4]&{14{CLR}}, VALID&ITER, CLK,
w_rng4[13:0]);

 defparam rng5.n=14;

 defparam rng5.tap0=AAA;

 defparam rng5.tap1=BBB;

 defparam rng5.tap2=CCC;

 defparam rng5.tap3=DDD;

 LFSR rng5(clears[5]&{14{CLR}}, sets[5]&{14{CLR}}, VALID&ITER, CLK,
w_rng5[13:0]);

 defparam rng6.n=14;

 defparam rng6.tap0=AAA;

 defparam rng6.tap1=BBB;

 defparam rng6.tap2=CCC;

 defparam rng6.tap3=DDD;

 LFSR rng6(clears[6]&{14{CLR}}, sets[6]&{14{CLR}}, VALID&ITER, CLK,
w_rng6[13:0]);

 defparam rng7.n=14;

 115

 defparam rng7.tap0=AAA;

 defparam rng7.tap1=BBB;

 defparam rng7.tap2=CCC;

 defparam rng7.tap3=DDD;

 LFSR rng7(clears[7]&{14{CLR}}, sets[7]&{14{CLR}}, VALID&ITER, CLK,
w_rng7[13:0]);

 defparam rng8.n=14;

 defparam rng8.tap0=AAA;

 defparam rng8.tap1=BBB;

 defparam rng8.tap2=CCC;

 defparam rng8.tap3=DDD;

 LFSR rng8(clears[8]&{14{CLR}}, sets[8]&{14{CLR}}, VALID&ITER, CLK,
w_rng8[13:0]);

 defparam rng9.n=14;

 defparam rng9.tap0=AAA;

 defparam rng9.tap1=BBB;

 defparam rng9.tap2=CCC;

 defparam rng9.tap3=DDD;

 LFSR rng9(clears[9]&{14{CLR}}, sets[9]&{14{CLR}}, VALID&ITER, CLK,
w_rng9[13:0]);

 defparam rng10.n=14;

 defparam rng10.tap0=AAA;

 defparam rng10.tap1=BBB;

 defparam rng10.tap2=CCC;

 defparam rng10.tap3=DDD;

 LFSR rng10(clears[10]&{14{CLR}}, sets[10]&{14{CLR}}, VALID&ITER, CLK,
w_rng10[13:0]);

 defparam rng11.n=14;

 defparam rng11.tap0=AAA;

 defparam rng11.tap1=BBB;

 defparam rng11.tap2=CCC;

 defparam rng11.tap3=DDD;

 LFSR rng11(clears[11]&{14{CLR}}, sets[11]&{14{CLR}}, VALID&ITER, CLK,
w_rng11[13:0]);

 defparam rng12.n=14;

 defparam rng12.tap0=AAA;

 defparam rng12.tap1=BBB;

 defparam rng12.tap2=CCC;

 defparam rng12.tap3=DDD;

 LFSR rng12(clears[12]&{14{CLR}}, sets[12]&{14{CLR}}, VALID&ITER, CLK,
w_rng12[13:0]);

 defparam rng13.n=14;

 defparam rng13.tap0=AAA;

 defparam rng13.tap1=BBB;

 116

 defparam rng13.tap2=CCC;

 defparam rng13.tap3=DDD;

 LFSR rng13(clears[13]&{14{CLR}}, sets[13]&{14{CLR}}, VALID&ITER, CLK,
w_rng13[13:0]);

 defparam rng14.n=14;

 defparam rng14.tap0=AAA;

 defparam rng14.tap1=BBB;

 defparam rng14.tap2=CCC;

 defparam rng14.tap3=DDD;

 LFSR rng14(clears[14]&{14{CLR}}, sets[14]&{14{CLR}}, VALID&ITER, CLK,
w_rng14[13:0]);

 defparam rng15.n=14;

 defparam rng15.tap0=AAA;

 defparam rng15.tap1=BBB;

 defparam rng15.tap2=CCC;

 defparam rng15.tap3=DDD;

 LFSR rng15(clears[15]&{14{CLR}}, sets[15]&{14{CLR}}, VALID&ITER, CLK,
w_rng15[13:0]);

endmodule

module slowhalflife(TT, CLR, VALID, ITER, CLK, clear);

 parameter wid_TT=14;

 input [wid_TT-1:0] TT;

 input CLR, VALID, ITER, CLK;

 output clear;

 wire clear;

 reg [wid_TT-1:0] d1, d2, d3;

 reg [2:0] isequal;

 assign clear = &isequal;

 always @(posedge CLK or posedge CLR)

 begin

 if (CLR)

 begin

 d1 <= {wid_TT{1'b1}};

 d2 <= {wid_TT{1'b0}};

 d3 <= {wid_TT{1'b1}};

 end

 else

 117

 begin

 if (VALID&ITER)

 begin

 d1 <= TT;

 d2 <= d1;

 d3 <= d2;

 end

 end

 end

 always @(TT, d1, d2, d3)

 begin

 isequal[0] <= (TT==d1)?1:0;

 isequal[1] <= (d1==d2)?1:0;

 isequal[2] <= (d2==d3)?1:0;

 end

endmodule

module clearunit(cur0, cur1, cur2, cur3, cur4, cur5, cur6, cur7, cur8, cur9,
cur10, cur11, cur12, cur13, cur14, cur15, CLR, VALID, ITER, CLK, cleared);

 input [13:0] cur0, cur1, cur2, cur3, cur4, cur5, cur6, cur7, cur8, cur9,
cur10, cur11, cur12, cur13, cur14, cur15;

 input CLR, VALID, ITER, CLK;

 output [15:0] cleared;

 wire [15:0] cleared;

 wire [15:0] c1;

 reg [2:0] c2;

 //slowhalflife(TT, CLR, VALID, ITER, CLK, clear);

 slowhalflife st12_0(cur0, CLR, VALID, ITER, CLK, c1[0]);

 slowhalflife st12_1(cur1, CLR, VALID, ITER, CLK, c1[1]);

 slowhalflife st12_2(cur2, CLR, VALID, ITER, CLK, c1[2]);

 slowhalflife st12_3(cur3, CLR, VALID, ITER, CLK, c1[3]);

 slowhalflife st12_4(cur4, CLR, VALID, ITER, CLK, c1[4]);

 slowhalflife st12_5(cur5, CLR, VALID, ITER, CLK, c1[5]);

 slowhalflife st12_6(cur6, CLR, VALID, ITER, CLK, c1[6]);

 slowhalflife st12_7(cur7, CLR, VALID, ITER, CLK, c1[7]);

 slowhalflife st12_8(cur8, CLR, VALID, ITER, CLK, c1[8]);

 slowhalflife st12_9(cur9, CLR, VALID, ITER, CLK, c1[9]);

 slowhalflife st12_10(cur10, CLR, VALID, ITER, CLK, c1[10]);

 118

 slowhalflife st12_11(cur11, CLR, VALID, ITER, CLK, c1[11]);

 slowhalflife st12_12(cur12, CLR, VALID, ITER, CLK, c1[12]);

 slowhalflife st12_13(cur13, CLR, VALID, ITER, CLK, c1[13]);

 slowhalflife st12_14(cur14, CLR, VALID, ITER, CLK, c1[14]);

 slowhalflife st12_15(cur15, CLR, VALID, ITER, CLK, c1[15]);

 assign cleared[0] = |c2 | CLR | c1[0];

 assign cleared[1] = |c2 | CLR | c1[1];

 assign cleared[2] = |c2 | CLR | c1[2];

 assign cleared[3] = |c2 | CLR | c1[3];

 assign cleared[4] = |c2 | CLR | c1[4];

 assign cleared[5] = |c2 | CLR | c1[5];

 assign cleared[6] = |c2 | CLR | c1[6];

 assign cleared[7] = |c2 | CLR | c1[7];

 assign cleared[8] = |c2 | CLR | c1[8];

 assign cleared[9] = |c2 | CLR | c1[9];

 assign cleared[10] = |c2 | CLR | c1[10];

 assign cleared[11] = |c2 | CLR | c1[11];

 assign cleared[12] = |c2 | CLR | c1[12];

 assign cleared[13] = |c2 | CLR | c1[13];

 assign cleared[14] = |c2 | CLR | c1[14];

 assign cleared[15] = |c2 | CLR | c1[15];

 always @(cur0, cur1, cur2, cur3)

 begin

 c2[0] <= (cur0==cur1)?1:0;

 c2[1] <= (cur1==cur2)?1:0;

 c2[2] <= (cur2==cur3)?1:0;

 end

endmodule

module strgen(rnd0, rnd1, rnd2, rnd3, rnd4, rnd5, rnd6, rnd7, rnd8, rnd9, rnd10,
rnd11, rnd12, rnd13, rnd14, rnd15, prev0, prev1, prev2, prev3, prev4, prev5, prev6,
prev7, prev8, prev9, prev10, prev11, prev12, prev13, prev14, prev15, reset_val, CLR,
VALID, ITER, CLK, r_next0, r_next1, r_next2, r_next3, r_next4, r_next5, r_next6, r_next7,
r_next8, r_next9, r_next10,r_next11, r_next12, r_next13, r_next14, r_next15);

 //previous is the 14-bit string from the last generation

 //next is the 22-bit string of {14-bit chromosome, 8-bit fitness value}

 parameter wid_TT=14;

 parameter wid_fit=8;

 119

 //----------------------------------

 input [13:0] rnd0, rnd1, rnd2, rnd3, rnd4, rnd5, rnd6, rnd7, rnd8, rnd9,
rnd10, rnd11, rnd12, rnd13, rnd14, rnd15;

 input[13:0] prev0, prev1, prev2, prev3, prev4, prev5, prev6, prev7, prev8,
prev9, prev10, prev11, prev12, prev13, prev14, prev15;

 input [7:0] reset_val;

 input CLR, VALID, ITER;

 input CLK /* synthesis syn_noclockbuf=1 syn_maxfan=100000 */ ;

 output [21:0] r_next0, r_next1, r_next2, r_next3, r_next4, r_next5,
r_next6, r_next7, r_next8, r_next9, r_next10,r_next11, r_next12, r_next13, r_next14,
r_next15;

 reg [21:0] r_next0, r_next1, r_next2, r_next3, r_next4, r_next5, r_next6,
r_next7, r_next8, r_next9, r_next10,r_next11, r_next12, r_next13, r_next14, r_next15;

 //----------------------------------

 reg [wid_TT+wid_fit-1:0] next0, next1, next2, next3, next4, next5, next6,
next7, next8, next9, next10, next11, next12, next13, next14, next15;

 reg [13:0] prev0d1, prev1d1, prev2d1, prev3d1, prev4d1, prev5d1, prev6d1,
prev7d1, prev8d1, prev9d1, prev10d1, prev11d1, prev12d1, prev13d1, prev14d1, prev15d1;

 wire [wid_TT-1:0] w_rng0, w_rng1, w_rng2, w_rng3, w_rng4, w_rng5, w_rng6,
w_rng7, w_rng8, w_rng9, w_rng10, w_rng11, w_rng12, w_rng13, w_rng14, w_rng15;

 wire [wid_TT+wid_fit-1:0] w_fit_r0, w_fit_r1, w_fit_r2, w_fit_r3,
w_fit_r4, w_fit_r5, w_fit_r6, w_fit_r7, w_fit_r8, w_fit_r9, w_fit_r10, w_fit_r11,
w_fit_r12, w_fit_r13, w_fit_r14, w_fit_r15;

 wire [wid_TT+wid_fit-1:0] w_fit_p0, w_fit_p1, w_fit_p2, w_fit_p3,
w_fit_p4, w_fit_p5, w_fit_p6, w_fit_p7, w_fit_p8, w_fit_p9, w_fit_p10, w_fit_p11,
w_fit_p12, w_fit_p13, w_fit_p14, w_fit_p15;

 wire [15:0] clearer;

 lfsrs l(rnd0, rnd1, rnd2, rnd3, rnd4, rnd5, rnd6, rnd7, rnd8, rnd9, rnd10,
rnd11, rnd12, rnd13, rnd14, rnd15, CLR, VALID, ITER, CLK, w_rng0, w_rng1, w_rng2, w_rng3,
w_rng4, w_rng5, w_rng6, w_rng7, w_rng8, w_rng9, w_rng10, w_rng11, w_rng12, w_rng13,
w_rng14, w_rng15);

 fit6 fit_r0(w_rng0[13:0], CLK, w_fit_r0);

 fit6 fit_r1(w_rng1[13:0], CLK, w_fit_r1);

 fit6 fit_r2(w_rng2[13:0], CLK, w_fit_r2);

 fit6 fit_r3(w_rng3[13:0], CLK, w_fit_r3);

 fit6 fit_r4(w_rng4[13:0], CLK, w_fit_r4);

 fit6 fit_r5(w_rng5[13:0], CLK, w_fit_r5);

 120

 fit6 fit_r6(w_rng6[13:0], CLK, w_fit_r6);

 fit6 fit_r7(w_rng7[13:0], CLK, w_fit_r7);

 fit6 fit_r8(w_rng8[13:0], CLK, w_fit_r8);

 fit6 fit_r9(w_rng9[13:0], CLK, w_fit_r9);

 fit6 fit_r10(w_rng10[13:0], CLK, w_fit_r10);

 fit6 fit_r11(w_rng11[13:0], CLK, w_fit_r11);

 fit6 fit_r12(w_rng12[13:0], CLK, w_fit_r12);

 fit6 fit_r13(w_rng13[13:0], CLK, w_fit_r13);

 fit6 fit_r14(w_rng14[13:0], CLK, w_fit_r14);

 fit6 fit_r15(w_rng15[13:0], CLK, w_fit_r15);

 fit6 fit_p0(prev0d1, CLK, w_fit_p0);

 fit6 fit_p1(prev1d1, CLK, w_fit_p1);

 fit6 fit_p2(prev2d1, CLK, w_fit_p2);

 fit6 fit_p3(prev3d1, CLK, w_fit_p3);

 fit6 fit_p4(prev4d1, CLK, w_fit_p4);

 fit6 fit_p5(prev5d1, CLK, w_fit_p5);

 fit6 fit_p6(prev6d1, CLK, w_fit_p6);

 fit6 fit_p7(prev7d1, CLK, w_fit_p7);

 fit6 fit_p8(prev8d1, CLK, w_fit_p8);

 fit6 fit_p9(prev9d1, CLK, w_fit_p9);

 fit6 fit_p10(prev10d1, CLK, w_fit_p10);

 fit6 fit_p11(prev11d1, CLK, w_fit_p11);

 fit6 fit_p12(prev12d1, CLK, w_fit_p12);

 fit6 fit_p13(prev13d1, CLK, w_fit_p13);

 fit6 fit_p14(prev14d1, CLK, w_fit_p14);

 fit6 fit_p15(prev15d1, CLK, w_fit_p15);

 clearunit clru(prev0, prev1, prev2, prev3, prev4, prev5, prev6, prev7,
prev8, prev9, prev10, prev11, prev12, prev13, prev14, prev15, CLR, VALID, ITER, CLK,
clearer);

 always @(*)

 begin

 next0 [wid_TT+wid_fit-1:0]<= ((clearer[0])|(w_fit_p0[wid_fit-
1:0]<reset_val[7:0])) ?w_fit_r0:w_fit_p0;

 next1 [wid_TT+wid_fit-1:0]<= ((clearer[1])|(w_fit_p1[wid_fit-
1:0]<reset_val[7:0])) ?w_fit_r1:w_fit_p1;

 next2 [wid_TT+wid_fit-1:0]<= ((clearer[2])|(w_fit_p2[wid_fit-
1:0]<reset_val[7:0])) ?w_fit_r2:w_fit_p2;

 next3 [wid_TT+wid_fit-1:0]<= ((clearer[3])|(w_fit_p3[wid_fit-
1:0]<reset_val[7:0])) ?w_fit_r3:w_fit_p3;

 next4 [wid_TT+wid_fit-1:0]<= ((clearer[4])|(w_fit_p4[wid_fit-
1:0]<reset_val[7:0])) ?w_fit_r4:w_fit_p4;

 121

 next5 [wid_TT+wid_fit-1:0]<= ((clearer[5])|(w_fit_p5[wid_fit-
1:0]<reset_val[7:0])) ?w_fit_r5:w_fit_p5;

 next6 [wid_TT+wid_fit-1:0]<= ((clearer[6])|(w_fit_p6[wid_fit-
1:0]<reset_val[7:0])) ?w_fit_r6:w_fit_p6;

 next7 [wid_TT+wid_fit-1:0]<= ((clearer[7])|(w_fit_p7[wid_fit-
1:0]<reset_val[7:0])) ?w_fit_r7:w_fit_p7;

 next8 [wid_TT+wid_fit-1:0]<= ((clearer[8])|(w_fit_p8[wid_fit-
1:0]<reset_val[7:0])) ?w_fit_r8:w_fit_p8;

 next9 [wid_TT+wid_fit-1:0]<= ((clearer[9])|(w_fit_p9[wid_fit-
1:0]<reset_val[7:0])) ?w_fit_r9:w_fit_p9;

 next10 [wid_TT+wid_fit-1:0]<= ((clearer[10])|(w_fit_p10[wid_fit-
1:0]<reset_val[7:0])) ?w_fit_r10:w_fit_p10;

 next11 [wid_TT+wid_fit-1:0]<= ((clearer[11])|(w_fit_p11[wid_fit-
1:0]<reset_val[7:0])) ?w_fit_r11:w_fit_p11;

 next12 [wid_TT+wid_fit-1:0]<= ((clearer[12])|(w_fit_p12[wid_fit-
1:0]<reset_val[7:0])) ?w_fit_r12:w_fit_p12;

 next13 [wid_TT+wid_fit-1:0]<= ((clearer[13])|(w_fit_p13[wid_fit-
1:0]<reset_val[7:0])) ?w_fit_r13:w_fit_p13;

 next14 [wid_TT+wid_fit-1:0]<= ((clearer[14])|(w_fit_p14[wid_fit-
1:0]<reset_val[7:0])) ?w_fit_r14:w_fit_p14;

 next15 [wid_TT+wid_fit-1:0]<= ((clearer[15])|(w_fit_p15[wid_fit-
1:0]<reset_val[7:0])) ?w_fit_r15:w_fit_p15;

 end

 always @(posedge CLK)

 begin

 prev0d1 <= prev0;

 prev1d1 <= prev1;

 prev2d1 <= prev2;

 prev3d1 <= prev3;

 prev4d1 <= prev4;

 prev5d1 <= prev5;

 prev6d1 <= prev6;

 prev7d1 <= prev7;

 prev8d1 <= prev8;

 prev9d1 <= prev9;

 prev10d1 <= prev10;

 prev11d1 <= prev11;

 prev12d1 <= prev12;

 prev13d1 <= prev13;

 prev14d1 <= prev14;

 prev15d1 <= prev15;

 r_next0 <= next0;

 r_next1 <= next1;

 r_next2 <= next2;

 122

 r_next3 <= next3;

 r_next4 <= next4;

 r_next5 <= next5;

 r_next6 <= next6;

 r_next7 <= next7;

 r_next8 <= next8;

 r_next9 <= next9;

 r_next10 <= next10;

 r_next11 <= next11;

 r_next12 <= next12;

 r_next13 <= next13;

 r_next14 <= next14;

 r_next15 <= next15;

 end

endmodule

module cross_unit(a, b, sel, CLK, w, x, y, z);

 parameter n=14;

 input [n-1:0] a, b, sel;

 input CLK;

 output [n-1:0] w, x, y, z;

 reg [n-1:0] w, x, y, z;

 wire [n-1:0] c, d;

 defparam c1.n=n;

 crossckt c1(a, b, sel, c, d);

 always @(posedge CLK)

 begin

 w <= a;

 x <= b;

 y <= c;

 z <= d;

 end

endmodule

module bit_swap_B(a, b, ctrl, aprime, bprime);

 //If ctrl==1 then swap a and b

 input a, b;

 input ctrl;

 123

 output aprime, bprime;

 reg aprime, bprime;

 always @(a, b, ctrl)

 begin

 aprime <= ctrl?b:a;

 bprime <= ctrl?a:b;

 end

endmodule

module mux16to1B(A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, sel, Q);

 parameter n=14;

 input [n-1:0] A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P;

 input [3:0] sel;

 output [n-1:0] Q;

 reg [n-1:0] Q;

 always @(A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, sel)

 case (sel)

 0: Q<=A;

 1: Q<=B;

 2: Q<=C;

 3: Q<=D;

 4: Q<=E;

 5: Q<=F;

 6: Q<=G;

 7: Q<=H;

 8: Q<=I;

 9: Q<=J;

 10: Q<=K;

 11: Q<=L;

 12: Q<=M;

 13: Q<=N;

 14: Q<=O;

 15: Q<=P;

 default: Q<=A;

 endcase

endmodule

module crossckt(a, b, ctrl, aprime, bprime);

 parameter n=8;

 124

 input [n-1:0] a, b, ctrl;

 output [n-1:0] aprime, bprime;

 wire [n-1:0] aprime, bprime;

 genvar k;

 generate

 for (k=0; k<n; k=k+1)

 begin: ea_bit

 bit_swap_B bs(a[k], b[k], ctrl[k], aprime[k], bprime[k]);

 end

 endgenerate

endmodule

module sel_cross(crc_adr, CLK, EN, reset, val);

 input [8:0] crc_adr;

 input CLK, EN, reset;

 output [31:0] val;

 wire [31:0] val;

 reg [7:0] adr;

 reg [7:0] sel_adr;

 crossover_mut_rom machine(sel_adr, val);

 always @(crc_adr, adr)

 sel_adr <= crc_adr[0]?crc_adr[8:1]:adr;

 always @(posedge CLK)

 begin

 if (reset)

 adr<=256'd0;

 else

 adr<=adr+EN;

 end

endmodule

module crossover_mut_rom(adr, val);

 //Creates a ROM to control crossover and mutation

 input [7:0] adr;

 output [31:0] val;

 reg [31:0] val;

 always @(adr)

 125

 begin

 case (adr)

 0: val=32'b00000001001100101000011001001110;

 1: val=32'b00100011010001011001110001111011;

 2: val=32'b01000110000000110001011110001100;

 3: val=32'b01000110110001010010001110011011;

 4: val=32'b00110110010000100101100100000111;

 5: val=32'b11000111000010110101010000110001;

 6: val=32'b01001110001110010010100001110000;

 7: val=32'b00000110100001010100111100100011;

 8: val=32'b00000111000100101010010100110110;

 9: val=32'b01111010010001010010101100001000;

 10: val=32'b00101001011000110101111000011011;

 11: val=32'b11000110000110100100001001011001;

 12: val=32'b00010111101100100011010111011110;

 13: val=32'b00100011010101101110000000010111;

 14: val=32'b01100010001101010000011100010100;

 15: val=32'b01110100100000010110100100110000;

 16: val=32'b01010001000011001001001101000111;

 17: val=32'b00010100001110100010000001100101;

 18: val=32'b10111010011100100100001110000101;

 19: val=32'b00010101001001001010001111000110;

 20: val=32'b11000110100101011000001101000001;

 21: val=32'b00000010111010101000010001100101;

 22: val=32'b00101100011010010101010000011010;

 23: val=32'b01010010110101000000011100110110;

 24: val=32'b01111011001111000100001001100000;

 25: val=32'b10011110101101010100110011010010;

 26: val=32'b00000111000110001110010110111111;

 27: val=32'b00001001100000110010011100010101;

 28: val=32'b00001101000101111111100011100011;

 29: val=32'b11000010111000010011010110100111;

 30: val=32'b01000110010100011111001000110000;

 31: val=32'b00110010000001000001101110101001;

 32: val=32'b01010110110010010000001101110001;

 33: val=32'b11110000101110000101110110010100;

 34: val=32'b00111100001000010111010001101011;

 35: val=32'b10000111000001101001000101000101;

 36: val=32'b01110110000010000001001010100100;

 37: val=32'b00011111101101001101001000110101;

 38: val=32'b01010000000101110011111001100010;

 39: val=32'b11000101111000010011001010110111;

 126

 40: val=32'b01001000000110110011100101110101;

 41: val=32'b00011000010100001101011010011010;

 42: val=32'b01110011100010110101010000000010;

 43: val=32'b00101000001101010000101101110100;

 44: val=32'b00010110001101010100101001111100;

 45: val=32'b11110100010100110000101000100110;

 46: val=32'b00100101000011100110010000011100;

 47: val=32'b00110001110110110010010110000000;

 48: val=32'b00011110100101100101001100001010;

 49: val=32'b01010100001111010001000010000010;

 50: val=32'b01000000001010100110010100011011;

 51: val=32'b01101100001010010101000101001000;

 52: val=32'b00000111000110010100101110000010;

 53: val=32'b01010100001100000010000110011100;

 54: val=32'b00100001000010000110101011001001;

 55: val=32'b01100011010111010111000010111100;

 56: val=32'b01010100000000110010100110000111;

 57: val=32'b01110000010000011001001101101101;

 58: val=32'b01001010001000011001010100110110;

 59: val=32'b00000100001011100011100111010001;

 60: val=32'b00100101000011000110011110110011;

 61: val=32'b01110010101001000101001110010000;

 62: val=32'b01110110001000011110001101010000;

 63: val=32'b00101011000110100110001111001110;

 64: val=32'b10110011001010101100000001100001;

 65: val=32'b01110001001001101010010000111001;

 66: val=32'b10100011000000010101011011001001;

 67: val=32'b00000110110001010011011110010100;

 68: val=32'b00000101100001110110001100011001;

 69: val=32'b00100001000010010111100001011111;

 70: val=32'b00011001100001100101101100110010;

 71: val=32'b00110110101001110010010110010001;

 72: val=32'b11100001010000100011100101111011;

 73: val=32'b01100001000010010111111000110101;

 74: val=32'b10000101110101100000001000110111;

 75: val=32'b11000100011000101000000010101110;

 76: val=32'b10010110000010100111001000011000;

 77: val=32'b10010110001101010100000110000111;

 78: val=32'b00001100001100101000010100010111;

 79: val=32'b11100110011100011101101100111010;

 80: val=32'b01011000100101001101000000111010;

 81: val=32'b00000010101100110101110010010001;

 127

 82: val=32'b10100011000000100110110001010100;

 83: val=32'b00100000000101111100101001101000;

 84: val=32'b01100001010001110011000010001011;

 85: val=32'b11111110010001111000001110010110;

 86: val=32'b01000000010101101000011100010011;

 87: val=32'b11001001101000100000101100010111;

 88: val=32'b01000011101110010000100010100010;

 89: val=32'b01000111010100101000101110100011;

 90: val=32'b10111001011101010011000001000010;

 91: val=32'b01100010000010010011100000010101;

 92: val=32'b10010101000000011101001001100111;

 93: val=32'b10010000000100111000001011111011;

 94: val=32'b01010111101010111100111100111000;

 95: val=32'b00101011010010010011110110100000;

 96: val=32'b10100010111001110011010010000000;

 97: val=32'b11100100110100000011000101011100;

 98: val=32'b00111101011101011000001001001100;

 99: val=32'b00101010010000001001001101010111;

 100: val=32'b00110100111000001000001001101010;

 101: val=32'b01010000001110001001001001000110;

 102: val=32'b01110100111100101010100000011100;

 103: val=32'b10000011000000010110001010101001;

 104: val=32'b00101100100001001010101110011111;

 105: val=32'b00100100011101101110100000000001;

 106: val=32'b10010101001001000000011010100111;

 107: val=32'b00100000101001000110000110000101;

 108: val=32'b00100000011001110100111100011011;

 109: val=32'b11100001001100100111011010111010;

 110: val=32'b01000110001100000001100101111010;

 111: val=32'b00001111000110101100001101100010;

 112: val=32'b00110100100001010000101001110001;

 113: val=32'b10000001011101011100000010110010;

 114: val=32'b10100011000101010010000011010100;

 115: val=32'b10100101011101100011010000000010;

 116: val=32'b00110100101000101011000000011101;

 117: val=32'b10000011011000000010101110010101;

 118: val=32'b00111100011100101000000000011001;

 119: val=32'b00000110011110010010000100110100;

 120: val=32'b10010100000000010111011010111010;

 121: val=32'b00000001100100110100001011001011;

 122: val=32'b10000000001110100001011101011001;

 123: val=32'b00000001101100110111010000101000;

 128

 124: val=32'b01010010010010000000011010010001;

 125: val=32'b00111001011101001100010110100010;

 126: val=32'b01100011101000010111110000001000;

 127: val=32'b01100011010100100100011111011010;

 128: val=32'b00010100011001010000001101110010;

 129: val=32'b00000101001001110100100110100110;

 130: val=32'b01010110000111001010101110011101;

 131: val=32'b01110010100100000001010101101000;

 132: val=32'b10000011011011001101001010111001;

 133: val=32'b01111000001101100101000010010100;

 134: val=32'b00000100000100111000001010110110;

 135: val=32'b01011000011110010000011001000010;

 136: val=32'b10100001001001011100011000000011;

 137: val=32'b01011001011100100011010001100001;

 138: val=32'b11000011100000010101001010010100;

 139: val=32'b00100001011110101001010111001110;

 140: val=32'b00100011000001110110101101011100;

 141: val=32'b10111000000101010100011100110010;

 142: val=32'b01000000001110010111010110000001;

 143: val=32'b01010010100101001100111100011000;

 144: val=32'b00000111001101100100000101011100;

 145: val=32'b01101101100000010011010101001001;

 146: val=32'b01011010001101110010000100001101;

 147: val=32'b10000001010000110010100101010000;

 148: val=32'b00010011001001001000000010100101;

 149: val=32'b10010011010000100001010110100111;

 150: val=32'b01100011001000000100010100011010;

 151: val=32'b00010010011101101100111010011010;

 152: val=32'b11010101001000001011010000110001;

 153: val=32'b01010111000010110010111101000110;

 154: val=32'b00001000001101000001011101011100;

 155: val=32'b01001110000000011001101101011010;

 156: val=32'b10101000010001010001000000100110;

 157: val=32'b11010000110001011110000100100110;

 158: val=32'b11010001011111001001011010000101;

 159: val=32'b10010001001110100000001011000100;

 160: val=32'b00100111000111101100011000110101;

 161: val=32'b01100001000001000101110101111000;

 162: val=32'b00100000010111001010010001100111;

 163: val=32'b00011100100101001011111101010010;

 164: val=32'b01110000100001010001101101000011;

 165: val=32'b01110101101101100011001000001010;

 129

 166: val=32'b00100110000001001000001110110111;

 167: val=32'b01010000101101110100100100110001;

 168: val=32'b00110010000100001011011001001001;

 169: val=32'b00000100100000110010010101101100;

 170: val=32'b00100111001101000110100100001000;

 171: val=32'b00110000000110010101011100101110;

 172: val=32'b00100101000000011011100001100011;

 173: val=32'b00000101011010001100100110110001;

 174: val=32'b01001000001000001100001100010101;

 175: val=32'b00101001001101000000011111000101;

 176: val=32'b00010111011000110101010011011010;

 177: val=32'b00100111000100000011011001001000;

 178: val=32'b00100001011101001000010101101010;

 179: val=32'b11000011100110100010010101000000;

 180: val=32'b00010010000010001010011100110100;

 181: val=32'b00000001001010010110010010000101;

 182: val=32'b00100101000110011100010010000111;

 183: val=32'b00011111100001001001001110100101;

 184: val=32'b11000100100001110010000101100101;

 185: val=32'b10010100000010000011110100100001;

 186: val=32'b10100001001000000111101101010110;

 187: val=32'b11010100001111110010000010100101;

 188: val=32'b00010110010010000010011101011110;

 189: val=32'b11010001011110010101001111001000;

 190: val=32'b10001001000000100101000101000011;

 191: val=32'b00011100011010100000001000110100;

 192: val=32'b00011000011001000111000010010010;

 193: val=32'b00010110011101001000100101011010;

 194: val=32'b00111001001000000110011100011010;

 195: val=32'b00011100011100100000011010100100;

 196: val=32'b01110100000101010011011000000010;

 197: val=32'b00010100001110010000101001101000;

 198: val=32'b11000000011010110100100100011010;

 199: val=32'b00111101100001110010010101101110;

 200: val=32'b01000101000110000000001100101011;

 201: val=32'b00001011010100010010011000111110;

 202: val=32'b00101010000111010100011101101001;

 203: val=32'b10100100000010000111001010111111;

 204: val=32'b01100001010110010011000001001101;

 205: val=32'b00011010011110001001011000100011;

 206: val=32'b01010010100001100011110101000001;

 207: val=32'b00010010100101001011001101011111;

 130

 208: val=32'b00010110010000101101000010001100;

 209: val=32'b10100110010110001100000000110100;

 210: val=32'b01000000101101111100000111010011;

 211: val=32'b00111010010000000010000111110110;

 212: val=32'b00010111001101000101101011010000;

 213: val=32'b11010110010110010001000001001100;

 214: val=32'b01110100001010100000000110111000;

 215: val=32'b01011011000010010010110000111101;

 216: val=32'b10010000001001010011010000011011;

 217: val=32'b10000011011100100101000000011100;

 218: val=32'b10001101000001000001001001010011;

 219: val=32'b10010100101100011101101010000000;

 220: val=32'b00010100011010100000011110000010;

 221: val=32'b00110101010010000000101101100001;

 222: val=32'b00100001001101100000111010000101;

 223: val=32'b01101011010100000001010001111000;

 224: val=32'b01000001000001011111101001100111;

 225: val=32'b00000111001010011010000101000101;

 226: val=32'b00100111101001000011000110001100;

 227: val=32'b00001001000110100101011000100011;

 228: val=32'b10010001001000110100110101111011;

 229: val=32'b01011010000001100100111100100011;

 230: val=32'b01000101000100001010110001111001;

 231: val=32'b11000001001001111011010100110100;

 232: val=32'b10101001010001100011101101010000;

 233: val=32'b00100001101110001001001101010110;

 234: val=32'b10110010001100001001010001111100;

 235: val=32'b00001011100011010011010001011010;

 236: val=32'b01001011000000100111010111000110;

 237: val=32'b01100000001010100100101101111111;

 238: val=32'b01101010001100010111001010000101;

 239: val=32'b01100000011100110101000101001010;

 240: val=32'b00000011010010000010000101010110;

 241: val=32'b00110101111000101000011100001011;

 242: val=32'b00010011110101100101000001001000;

 243: val=32'b01110001100101010011101101001000;

 244: val=32'b11000011010110010001101101100100;

 245: val=32'b00000101001010011000101110101101;

 246: val=32'b00111101100100100001101001100101;

 247: val=32'b10100000000100110010010001101001;

 248: val=32'b11010000011001000101101000011001;

 249: val=32'b00100011010110000111000001000001;

 131

 250: val=32'b00010000101000101110001101111111;

 251: val=32'b01010011100000001011010001100111;

 252: val=32'b10111000000101010010011001111010;

 253: val=32'b00010010010000001100001101111001;

 254: val=32'b11000011010000001001010101111011;

 255: val=32'b00110100100000010010110001010111;

 default: val=32'd0;

 endcase

 end

endmodule

module dff_cseNB(d, CLR, SET, EN, CLK, q);

 parameter n=32;

 input [n-1:0] d;

 input CLR, SET, EN, CLK;

 output [n-1:0] q;

 reg [n-1:0] q;

 always @(posedge CLR or posedge SET or posedge CLK or posedge EN)

 if (CLR)

 q<={n{1'b0}};

 else if (SET)

 q<={n{1'b1}};

 else if (EN)

 q<=d;

endmodule

module dff_eNB(d, EN, CLK, q);

 parameter n=16;

 input [n-1:0] d;

 input EN, CLK;

 output [n-1:0] q;

 reg [n-1:0] q;

 always @(posedge CLK)

 if (EN)

 q<=d;

endmodule

module mux2to1B(A, B, sel, Q);

 parameter n=32;

 input [n-1:0] A, B;

 input sel;

 output [n-1:0] Q;

 132

 reg [n-1:0] Q;

 always @(A, B, sel)

 case (sel)

 0: Q<=A;

 1: Q<=B;

 default: Q<=A;

 endcase

endmodule

module dff_ceNB(d, CLR, EN, CLK, q);

 parameter n=16;

 input [n-1:0] d;

 input CLR, EN, CLK;

 output [n-1:0] q;

 reg [n-1:0] q;

 always @(posedge CLK or posedge CLR)

 begin

 if (CLR)

 q <= {16{1'b0}};

 else if (EN)

 q <= d;

 end

endmodule

module MutAdr(inc, CLK, CLR, VALID, ITER, adr);

 parameter n=8;

 input inc, CLK, CLR, VALID, ITER;

 output [7:0] adr;

 wire [7:0] adr;

 wire [7:0] qsum;

 reg [7:0] sum;

 defparam outmux.n=n;

 mux2to1B outmux(sum, {n{1'b0}}, CLR, adr);

 defparam ff.n=n;

 dff_eNB ff(sum, VALID&ITER, CLK, qsum);

 always @(inc or adr)

 sum <= inc + adr;

endmodule

 133

module MutRom(ADR, val);

 input [7:0] ADR;

 output [24:0] val;

 reg [24:0] val;

 //Format: 7 bits of 0-run length, wid_TT bits of mutator, 4 bits of which
element selection.

 always @(ADR)

 begin

 case (ADR)

 0: val=25'b0000010000000001000000011;

 1: val=25'b0000001000000000000001001;

 2: val=25'b1111111000001001000001000;

 3: val=25'b0011101000000000000000010;

 4: val=25'b0010001000000000000000000;

 5: val=25'b0010100011000110100100000;

 6: val=25'b0110010010000001100001100;

 7: val=25'b1111111000000000000000001;

 8: val=25'b0011010000000101001001010;

 9: val=25'b0100010000010000000001010;

 10: val=25'b0110101001000000001001110;

 11: val=25'b0000110000000000000011110;

 12: val=25'b1100011000010000000101111;

 13: val=25'b1111111000000000000001110;

 14: val=25'b0001110001101000000000001;

 15: val=25'b1110011010000100100010001;

 16: val=25'b0110100010001001000010110;

 17: val=25'b0100111000010100000001001;

 18: val=25'b1101011100000000001000011;

 19: val=25'b1110001001000000000001100;

 20: val=25'b0111011000001000000101100;

 21: val=25'b1111111000000000000001101;

 22: val=25'b0100001000100000100000101;

 23: val=25'b0000111000000000010001111;

 24: val=25'b1111111000000000000000011;

 25: val=25'b1111111000000000000001001;

 26: val=25'b1010101000000000000001000;

 27: val=25'b1011000000001000000001010;

 28: val=25'b1111111000000000000000111;

 29: val=25'b1111111000000000000001010;

 30: val=25'b0001100000000000000001100;

 134

 31: val=25'b0111111000101100000000010;

 32: val=25'b1111111000000000000000001;

 33: val=25'b0111101000010000001000010;

 34: val=25'b1111111000000000000000101;

 35: val=25'b1011000100000000001001000;

 36: val=25'b0100001001000011000010000;

 37: val=25'b0010101000000000000101000;

 38: val=25'b0100010100101000000101101;

 39: val=25'b1111111000000000000000110;

 40: val=25'b0101100000010010000000101;

 41: val=25'b0000001000000000001000000;

 42: val=25'b0100110000000000000000000;

 43: val=25'b1000000000000000000011011;

 44: val=25'b1110010100000100000001111;

 45: val=25'b0000000000100000000001100;

 46: val=25'b0010110000001000000010100;

 47: val=25'b1011101000001000000001001;

 48: val=25'b0111111000000000000001000;

 49: val=25'b0111010000010000000000011;

 50: val=25'b1111111000000000000001001;

 51: val=25'b1111111000000000000001100;

 52: val=25'b0001100010000100000001110;

 53: val=25'b0011000001001000100000001;

 54: val=25'b1111010000000000000000001;

 55: val=25'b0010011000000000000001101;

 56: val=25'b0111000001000000001010101;

 57: val=25'b1110111000000000000001111;

 58: val=25'b1011010000000000000000000;

 59: val=25'b0100111000001000000001000;

 60: val=25'b1111111000000000000001011;

 61: val=25'b1111111000000000000000011;

 62: val=25'b1111111000000000000000110;

 63: val=25'b0011101010000100010001011;

 64: val=25'b1111111000000000000001101;

 65: val=25'b1111111000000000000001011;

 66: val=25'b0111000100000100000101011;

 67: val=25'b0001000000001000000000000;

 68: val=25'b1111111000000000000001001;

 69: val=25'b0100110010100100000000110;

 70: val=25'b0100001010000000000001011;

 71: val=25'b0100011001000000000001011;

 72: val=25'b0111001000000100000110100;

 135

 73: val=25'b0110000000001000100000100;

 74: val=25'b0000011000000000000010010;

 75: val=25'b1111111000000000000001000;

 76: val=25'b0000101000000010000001111;

 77: val=25'b1111111000000000000001111;

 78: val=25'b0100001001000000000001011;

 79: val=25'b1111111000000000000001111;

 80: val=25'b0101010000000000000000100;

 81: val=25'b0010101010000000000001001;

 82: val=25'b1111111000000000000000101;

 83: val=25'b1011101000000000110011001;

 84: val=25'b0001111000000000100100101;

 85: val=25'b1111111000000000000000111;

 86: val=25'b0011101000000000000000101;

 87: val=25'b1111111000000000000000111;

 88: val=25'b1111111000000000000000111;

 89: val=25'b1111111000000000000001110;

 90: val=25'b0101011000001000001100011;

 91: val=25'b1110011001000010101000001;

 92: val=25'b0111110000000000000001011;

 93: val=25'b1111111000000000000001101;

 94: val=25'b0001010001100000000101110;

 95: val=25'b0110010000001000000001100;

 96: val=25'b1001100000000000000001111;

 97: val=25'b0011000010000001000011011;

 98: val=25'b0001111001000000000000010;

 99: val=25'b0001100000100000001100000;

 100: val=25'b1111111000000000000000100;

 101: val=25'b0001011100100100000000010;

 102: val=25'b0010000000000001000001100;

 103: val=25'b0010100000000001000101001;

 104: val=25'b1111111000000000000000000;

 105: val=25'b0101100000000100010001100;

 106: val=25'b0000000010000010000001100;

 107: val=25'b0001101000000000000001011;

 108: val=25'b1111010000000000000000101;

 109: val=25'b0110110000000000000001101;

 110: val=25'b0101101100001000000111011;

 111: val=25'b1111111000000000000001011;

 112: val=25'b1111111000000000000000010;

 113: val=25'b1100011000000000100000001;

 114: val=25'b0011011000000000000001110;

 136

 115: val=25'b1111111000000000000001010;

 116: val=25'b0011101000000000000001001;

 117: val=25'b0110010000000000010000111;

 118: val=25'b1111111000000000000001011;

 119: val=25'b1111111000000000000000110;

 120: val=25'b1100100000001000010000001;

 121: val=25'b0010010000000100000001110;

 122: val=25'b1101011000000000110001001;

 123: val=25'b1000001000000000000001100;

 124: val=25'b1000100100100001000001110;

 125: val=25'b0101001000100100001101111;

 126: val=25'b1111111000000000000001101;

 127: val=25'b0010001000000000000000000;

 128: val=25'b1111111000000000000001111;

 129: val=25'b0001001000010000000101010;

 130: val=25'b0001011010000000001000011;

 131: val=25'b0101100000000000001000001;

 132: val=25'b0001110010000000000010111;

 133: val=25'b0010100000000010000000101;

 134: val=25'b1010010001000000000001011;

 135: val=25'b1001100000000000000000101;

 136: val=25'b0011101000000010010001111;

 137: val=25'b1001001000000000100000010;

 138: val=25'b0000001000001000000010101;

 139: val=25'b1110000000100001000001100;

 140: val=25'b0100100000100001000001010;

 141: val=25'b0000101001000000000110000;

 142: val=25'b0110111000000000000001111;

 143: val=25'b1111111000000000000000100;

 144: val=25'b1111111000000000000001010;

 145: val=25'b1111111000000000000000101;

 146: val=25'b0110011000000000000001101;

 147: val=25'b1111111000000000000001001;

 148: val=25'b0011011000000001000000010;

 149: val=25'b0111110100000000000001010;

 150: val=25'b1001000000001100000001000;

 151: val=25'b0010010000000000000001111;

 152: val=25'b0111101000000001000101100;

 153: val=25'b0010110000000000010101000;

 154: val=25'b0001101000000000000001011;

 155: val=25'b1011110100001000000000010;

 156: val=25'b0010000010000001000001100;

 137

 157: val=25'b0011101000000001000000001;

 158: val=25'b0110101000000000100001011;

 159: val=25'b0111100100000000000011110;

 160: val=25'b0111110000000100000000101;

 161: val=25'b0011001000000000001000001;

 162: val=25'b0110000010001001000000110;

 163: val=25'b1011001001000000100001010;

 164: val=25'b1100100000010000010001100;

 165: val=25'b0100010000000111000100110;

 166: val=25'b1010001000000010000001110;

 167: val=25'b1001001000000000000001010;

 168: val=25'b1111111000000000000001010;

 169: val=25'b0111101000010000000001101;

 170: val=25'b1111111000000000000000110;

 171: val=25'b1111111000000000000000101;

 172: val=25'b1000100000000100000000111;

 173: val=25'b0101111010001000000000000;

 174: val=25'b1001100000000100000001101;

 175: val=25'b1111111000000000000000100;

 176: val=25'b1111111000000000000000100;

 177: val=25'b0010001000000000000001101;

 178: val=25'b1111111000000000000001001;

 179: val=25'b0010111000000000000101100;

 180: val=25'b0100001000000000000001000;

 181: val=25'b1000101000000001000010111;

 182: val=25'b0001100000000010000000111;

 183: val=25'b1000100000000000000001101;

 184: val=25'b0101100011001010000001110;

 185: val=25'b0010011100000100001000010;

 186: val=25'b0000100000000100000000001;

 187: val=25'b1100111000000000000001011;

 188: val=25'b1010111000000001100001110;

 189: val=25'b0001001001000100001011011;

 190: val=25'b0100001000000000000001111;

 191: val=25'b1111111000000000000001101;

 192: val=25'b0010100000000011000011001;

 193: val=25'b0001100001000001000100111;

 194: val=25'b1111111000000000000000010;

 195: val=25'b1111111000000000000000101;

 196: val=25'b0001001000000000000001010;

 197: val=25'b0000010000010000010011101;

 198: val=25'b1110110000000001000001110;

 138

 199: val=25'b1000111001001000000001111;

 200: val=25'b1111111000000000000001010;

 201: val=25'b0100100000000000000010110;

 202: val=25'b1111111000000000000000110;

 203: val=25'b0000111000001000000101101;

 204: val=25'b0111110000000000000000011;

 205: val=25'b0010010000000000010000011;

 206: val=25'b1001100000000000000001101;

 207: val=25'b0110001000000000000010001;

 208: val=25'b0010001100000010100001000;

 209: val=25'b0100000000011000000001111;

 210: val=25'b0111011000000000000011011;

 211: val=25'b1111111000000000000001100;

 212: val=25'b0101000100000000000100011;

 213: val=25'b1110001001000000000000111;

 214: val=25'b0111011000000000000001110;

 215: val=25'b1111111000000000000000110;

 216: val=25'b0110101000001000000000000;

 217: val=25'b0100111000000000001000111;

 218: val=25'b0000010000000001000000010;

 219: val=25'b0001010000000000000001111;

 220: val=25'b0000010000100000100001010;

 221: val=25'b1111111000000000000000110;

 222: val=25'b1110010000000000000000010;

 223: val=25'b1111111000000000000000110;

 224: val=25'b1111111000000000000000011;

 225: val=25'b1111111000000000000000100;

 226: val=25'b1111111000000000000000000;

 227: val=25'b0011001000000000000001000;

 228: val=25'b1111111000000000000001000;

 229: val=25'b0101100000000000000000011;

 230: val=25'b1001111000000010100000010;

 231: val=25'b0111100000000000000001011;

 232: val=25'b1111100000000000000000101;

 233: val=25'b0001000000000000010000100;

 234: val=25'b1101111000000010000001110;

 235: val=25'b0101010000000000000001011;

 236: val=25'b0010001000100010000000101;

 237: val=25'b0011111100000000000000011;

 238: val=25'b0011000000000100010001000;

 239: val=25'b0010010001001000000000100;

 240: val=25'b1001010100000000000001110;

 139

 241: val=25'b1001101000100000000000101;

 242: val=25'b0011101000000000000001011;

 243: val=25'b0011100000100000000000001;

 244: val=25'b1111111000000000000001100;

 245: val=25'b1001011000000000000000001;

 246: val=25'b1111111000000000000000101;

 247: val=25'b0100000000000000000000100;

 248: val=25'b0000000000001000000001011;

 249: val=25'b0011100000110000001001100;

 250: val=25'b1010010010000000001000111;

 251: val=25'b1111111000000000000000110;

 252: val=25'b0101111000000000000001001;

 253: val=25'b0000110010011000000011001;

 254: val=25'b0100011000000000000101011;

 255: val=25'b1110111000000000000000001;

 default: val=25'd0;

 endcase

 end

endmodule

module incer(val, CLR, EN, CLK, out);

 parameter n=8;

 input val, CLR, EN, CLK;

 output [n-1:0] out;

 reg [n-1:0] out;

 always @(posedge CLK or posedge CLR)

 if (CLR)

 out <= {n{1'b0}};

 else if (EN)

 out <= out + val;

endmodule

module muter(crc_adr, CLR, VALID, ITER, CLK, r_mutout);

 parameter wrom=25; //number of bits in ROM lines, equals {7'Zeros run,
14'Mutation code, 4'element selection}

 parameter alines=8; //number of bits in ROM address line

 parameter maxrun=7; //number of bits in countre

 input [8:0] crc_adr;

 input CLR, VALID, ITER, CLK;

 output [17:0] r_mutout;

 reg [17:0] r_mutout;

 140

 wire [17:0] mutout;

 wire [wrom-1:0] romout;

 wire w_isnequal;

 wire [alines-1:0] wq_adr;

 wire [maxrun-1:0] wq_ctr;

 reg r_isequal, d_isequal;

 reg [7:0] rom_adr;

 assign w_isnequal = ~r_isequal;

 defparam inc_ctr.n=maxrun;

 incer inc_ctr(~r_isequal, d_isequal|CLR, VALID&ITER, CLK, wq_ctr);

 always @(wq_ctr, romout[wrom-1:wrom-maxrun])

 r_isequal <= wq_ctr == romout[wrom-1:wrom-maxrun];

 always @(posedge CLK)// or posedge CLR)

 begin

 d_isequal <= r_isequal;

 r_mutout <= mutout;

 end

 defparam inc_adr.n=alines;

 incer inc_adr(d_isequal, CLR, VALID&ITER, CLK, wq_adr);

 always @(crc_adr, wq_adr)

 rom_adr <= crc_adr[0]?crc_adr[8:1]:wq_adr;

 MutRom mr(rom_adr, romout);

 defparam m_mutout.n=wrom-maxrun;

 mux2to1B m_mutout({(wrom-maxrun){1'b0}}, romout[(wrom-maxrun-1):0],
r_isequal, mutout);

endmodule

module crossmut(w_sort0, w_sort1, w_sort2, w_sort3, w_sort4, w_sort5, w_sort6,
w_sort7, w_sort8, w_sort9, w_sort10, w_sort11, w_sort12, w_sort13, w_sort14, w_sort15,
crc_adr, crosscode, CLR, VALID, ITER, CLK, r_mout0, r_mout1, r_mout2, r_mout3, r_mout4,

 141

r_mout5, r_mout6, r_mout7, r_mout8, r_mout9, r_mout10, r_mout11, r_mout12, r_mout13,
r_mout14, r_mout15);

 parameter wid_TT=14;

 parameter wid_fit=8;

 input [21:0] w_sort0, w_sort1, w_sort2, w_sort3, w_sort4, w_sort5,
w_sort6, w_sort7, w_sort8, w_sort9, w_sort10, w_sort11, w_sort12, w_sort13, w_sort14,
w_sort15;

 input [8:0] crc_adr;

 input [13:0] crosscode;

 //crc adr has the format of 8:1 adr lines, 0 control line

 input CLR;

 input VALID, ITER;

 input CLK /* synthesis syn_noclockbuf=1 syn_maxfan=100000 */;

 output [13:0] r_mout0, r_mout1, r_mout2, r_mout3, r_mout4, r_mout5,
r_mout6, r_mout7, r_mout8, r_mout9, r_mout10, r_mout11, r_mout12, r_mout13, r_mout14,
r_mout15;

 reg [13:0] r_mout0, r_mout1, r_mout2, r_mout3, r_mout4, r_mout5, r_mout6,
r_mout7, r_mout8, r_mout9, r_mout10, r_mout11, r_mout12, r_mout13, r_mout14, r_mout15;

 wire [13:0] w_mout0, w_mout1, w_mout2, w_mout3, w_mout4, w_mout5, w_mout6,
w_mout7, w_mout8, w_mout9, w_mout10, w_mout11, w_mout12, w_mout13, w_mout14, w_mout15;

 wire [13:0] w_out0, w_out1, w_out2, w_out3, w_out4, w_out5, w_out6,
w_out7, w_out8, w_out9, w_out10, w_out11, w_out12, w_out13, w_out14, w_out15;

 wire [31:0] sel;

 wire [wid_TT-1:0] w_m0, w_m1, w_m2, w_m3, w_m4, w_m5, w_m6, w_m7;

 reg [wid_TT-1:0] r_m0, r_m1, r_m2, r_m3, r_m4, r_m5, r_m6, r_m7;

 reg w_selmut0, w_selmut1, w_selmut2, w_selmut3, w_selmut4, w_selmut5,
w_selmut6, w_selmut7, w_selmut8, w_selmut9, w_selmut10, w_selmut11, w_selmut12,
w_selmut13, w_selmut14, w_selmut15;

 reg [13:0] w_muted0, w_muted1, w_muted2, w_muted3, w_muted4, w_muted5,
w_muted6, w_muted7, w_muted8, w_muted9, w_muted10, w_muted11, w_muted12, w_muted13,
w_muted14, w_muted15;

 //sel_cross(CLK, EN, reset, val);

 sel_cross selx(crc_adr, CLK, VALID&ITER, CLR, sel);

 //wire [wid_TT-1:0] crosscode;

 //assign crosscode = 14'b11111111100000;

 //assign crosscode = 14'b00000011111111;

 wire [17:0] w_mutout;

 //muter(CLR, VALID, ITER, CLK, r_mutout);

 142

 muter mtr(crc_adr, CLR, VALID, ITER, CLK, w_mutout);

 defparam m0.n=wid_TT;

 defparam m1.n=wid_TT;

 defparam m2.n=wid_TT;

 defparam m3.n=wid_TT;

 defparam m4.n=wid_TT;

 defparam m5.n=wid_TT;

 defparam m6.n=wid_TT;

 defparam m7.n=wid_TT;

 mux16to1B m0(w_sort0[wid_TT+wid_fit-1:wid_fit], w_sort1[wid_TT+wid_fit-
1:wid_fit], w_sort2[wid_TT+wid_fit-1:wid_fit], w_sort3[wid_TT+wid_fit-1:wid_fit],
w_sort4[wid_TT+wid_fit-1:wid_fit], w_sort5[wid_TT+wid_fit-1:wid_fit],
w_sort6[wid_TT+wid_fit-1:wid_fit], w_sort7[wid_TT+wid_fit-1:wid_fit],
w_sort8[wid_TT+wid_fit-1:wid_fit], w_sort9[wid_TT+wid_fit-1:wid_fit],
w_sort10[wid_TT+wid_fit-1:wid_fit], w_sort11[wid_TT+wid_fit-1:wid_fit],
w_sort12[wid_TT+wid_fit-1:wid_fit], w_sort13[wid_TT+wid_fit-1:wid_fit],
w_sort14[wid_TT+wid_fit-1:wid_fit], w_sort15[wid_TT+wid_fit-1:wid_fit], sel[31:28],
w_m0);

 mux16to1B m1(w_sort0[wid_TT+wid_fit-1:wid_fit], w_sort1[wid_TT+wid_fit-
1:wid_fit], w_sort2[wid_TT+wid_fit-1:wid_fit], w_sort3[wid_TT+wid_fit-1:wid_fit],
w_sort4[wid_TT+wid_fit-1:wid_fit], w_sort5[wid_TT+wid_fit-1:wid_fit],
w_sort6[wid_TT+wid_fit-1:wid_fit], w_sort7[wid_TT+wid_fit-1:wid_fit],
w_sort8[wid_TT+wid_fit-1:wid_fit], w_sort9[wid_TT+wid_fit-1:wid_fit],
w_sort10[wid_TT+wid_fit-1:wid_fit], w_sort11[wid_TT+wid_fit-1:wid_fit],
w_sort12[wid_TT+wid_fit-1:wid_fit], w_sort13[wid_TT+wid_fit-1:wid_fit],
w_sort14[wid_TT+wid_fit-1:wid_fit], w_sort15[wid_TT+wid_fit-1:wid_fit], sel[27:24],
w_m1);

 mux16to1B m2(w_sort0[wid_TT+wid_fit-1:wid_fit], w_sort1[wid_TT+wid_fit-
1:wid_fit], w_sort2[wid_TT+wid_fit-1:wid_fit], w_sort3[wid_TT+wid_fit-1:wid_fit],
w_sort4[wid_TT+wid_fit-1:wid_fit], w_sort5[wid_TT+wid_fit-1:wid_fit],
w_sort6[wid_TT+wid_fit-1:wid_fit], w_sort7[wid_TT+wid_fit-1:wid_fit],
w_sort8[wid_TT+wid_fit-1:wid_fit], w_sort9[wid_TT+wid_fit-1:wid_fit],
w_sort10[wid_TT+wid_fit-1:wid_fit], w_sort11[wid_TT+wid_fit-1:wid_fit],
w_sort12[wid_TT+wid_fit-1:wid_fit], w_sort13[wid_TT+wid_fit-1:wid_fit],
w_sort14[wid_TT+wid_fit-1:wid_fit], w_sort15[wid_TT+wid_fit-1:wid_fit], sel[23:20],
w_m2);

 mux16to1B m3(w_sort0[wid_TT+wid_fit-1:wid_fit], w_sort1[wid_TT+wid_fit-
1:wid_fit], w_sort2[wid_TT+wid_fit-1:wid_fit], w_sort3[wid_TT+wid_fit-1:wid_fit],
w_sort4[wid_TT+wid_fit-1:wid_fit], w_sort5[wid_TT+wid_fit-1:wid_fit],
w_sort6[wid_TT+wid_fit-1:wid_fit], w_sort7[wid_TT+wid_fit-1:wid_fit],
w_sort8[wid_TT+wid_fit-1:wid_fit], w_sort9[wid_TT+wid_fit-1:wid_fit],
w_sort10[wid_TT+wid_fit-1:wid_fit], w_sort11[wid_TT+wid_fit-1:wid_fit],
w_sort12[wid_TT+wid_fit-1:wid_fit], w_sort13[wid_TT+wid_fit-1:wid_fit],
w_sort14[wid_TT+wid_fit-1:wid_fit], w_sort15[wid_TT+wid_fit-1:wid_fit], sel[19:16],
w_m3);

 mux16to1B m4(w_sort0[wid_TT+wid_fit-1:wid_fit], w_sort1[wid_TT+wid_fit-
1:wid_fit], w_sort2[wid_TT+wid_fit-1:wid_fit], w_sort3[wid_TT+wid_fit-1:wid_fit],
w_sort4[wid_TT+wid_fit-1:wid_fit], w_sort5[wid_TT+wid_fit-1:wid_fit],
w_sort6[wid_TT+wid_fit-1:wid_fit], w_sort7[wid_TT+wid_fit-1:wid_fit],
w_sort8[wid_TT+wid_fit-1:wid_fit], w_sort9[wid_TT+wid_fit-1:wid_fit],
w_sort10[wid_TT+wid_fit-1:wid_fit], w_sort11[wid_TT+wid_fit-1:wid_fit],
w_sort12[wid_TT+wid_fit-1:wid_fit], w_sort13[wid_TT+wid_fit-1:wid_fit],
w_sort14[wid_TT+wid_fit-1:wid_fit], w_sort15[wid_TT+wid_fit-1:wid_fit], sel[15:12],
w_m4);

 mux16to1B m5(w_sort0[wid_TT+wid_fit-1:wid_fit], w_sort1[wid_TT+wid_fit-
1:wid_fit], w_sort2[wid_TT+wid_fit-1:wid_fit], w_sort3[wid_TT+wid_fit-1:wid_fit],
w_sort4[wid_TT+wid_fit-1:wid_fit], w_sort5[wid_TT+wid_fit-1:wid_fit],
w_sort6[wid_TT+wid_fit-1:wid_fit], w_sort7[wid_TT+wid_fit-1:wid_fit],
w_sort8[wid_TT+wid_fit-1:wid_fit], w_sort9[wid_TT+wid_fit-1:wid_fit],

 143

w_sort10[wid_TT+wid_fit-1:wid_fit], w_sort11[wid_TT+wid_fit-1:wid_fit],
w_sort12[wid_TT+wid_fit-1:wid_fit], w_sort13[wid_TT+wid_fit-1:wid_fit],
w_sort14[wid_TT+wid_fit-1:wid_fit], w_sort15[wid_TT+wid_fit-1:wid_fit], sel[11:8], w_m5);

 mux16to1B m6(w_sort0[wid_TT+wid_fit-1:wid_fit], w_sort1[wid_TT+wid_fit-
1:wid_fit], w_sort2[wid_TT+wid_fit-1:wid_fit], w_sort3[wid_TT+wid_fit-1:wid_fit],
w_sort4[wid_TT+wid_fit-1:wid_fit], w_sort5[wid_TT+wid_fit-1:wid_fit],
w_sort6[wid_TT+wid_fit-1:wid_fit], w_sort7[wid_TT+wid_fit-1:wid_fit],
w_sort8[wid_TT+wid_fit-1:wid_fit], w_sort9[wid_TT+wid_fit-1:wid_fit],
w_sort10[wid_TT+wid_fit-1:wid_fit], w_sort11[wid_TT+wid_fit-1:wid_fit],
w_sort12[wid_TT+wid_fit-1:wid_fit], w_sort13[wid_TT+wid_fit-1:wid_fit],
w_sort14[wid_TT+wid_fit-1:wid_fit], w_sort15[wid_TT+wid_fit-1:wid_fit], sel[7:4], w_m6);

 mux16to1B m7(w_sort0[wid_TT+wid_fit-1:wid_fit], w_sort1[wid_TT+wid_fit-
1:wid_fit], w_sort2[wid_TT+wid_fit-1:wid_fit], w_sort3[wid_TT+wid_fit-1:wid_fit],
w_sort4[wid_TT+wid_fit-1:wid_fit], w_sort5[wid_TT+wid_fit-1:wid_fit],
w_sort6[wid_TT+wid_fit-1:wid_fit], w_sort7[wid_TT+wid_fit-1:wid_fit],
w_sort8[wid_TT+wid_fit-1:wid_fit], w_sort9[wid_TT+wid_fit-1:wid_fit],
w_sort10[wid_TT+wid_fit-1:wid_fit], w_sort11[wid_TT+wid_fit-1:wid_fit],
w_sort12[wid_TT+wid_fit-1:wid_fit], w_sort13[wid_TT+wid_fit-1:wid_fit],
w_sort14[wid_TT+wid_fit-1:wid_fit], w_sort15[wid_TT+wid_fit-1:wid_fit], sel[3:0], w_m7);

 defparam mutmux0.n=wid_TT;

 defparam mutmux1.n=wid_TT;

 defparam mutmux2.n=wid_TT;

 defparam mutmux3.n=wid_TT;

 defparam mutmux4.n=wid_TT;

 defparam mutmux5.n=wid_TT;

 defparam mutmux6.n=wid_TT;

 defparam mutmux7.n=wid_TT;

 defparam mutmux8.n=wid_TT;

 defparam mutmux9.n=wid_TT;

 defparam mutmux10.n=wid_TT;

 defparam mutmux11.n=wid_TT;

 defparam mutmux12.n=wid_TT;

 defparam mutmux13.n=wid_TT;

 defparam mutmux14.n=wid_TT;

 defparam mutmux15.n=wid_TT;

 mux2to1B mutmux0(w_out0, w_muted0, w_selmut0, w_mout0);

 mux2to1B mutmux1(w_out1, w_muted1, w_selmut1, w_mout1);

 mux2to1B mutmux2(w_out2, w_muted2, w_selmut2, w_mout2);

 mux2to1B mutmux3(w_out3, w_muted3, w_selmut3, w_mout3);

 mux2to1B mutmux4(w_out4, w_muted4, w_selmut4, w_mout4);

 mux2to1B mutmux5(w_out5, w_muted5, w_selmut5, w_mout5);

 mux2to1B mutmux6(w_out6, w_muted6, w_selmut6, w_mout6);

 mux2to1B mutmux7(w_out7, w_muted7, w_selmut7, w_mout7);

 mux2to1B mutmux8(w_out8, w_muted8, w_selmut8, w_mout8);

 mux2to1B mutmux9(w_out9, w_muted9, w_selmut9, w_mout9);

 mux2to1B mutmux10(w_out10, w_muted10, w_selmut10, w_mout10);

 mux2to1B mutmux11(w_out11, w_muted11, w_selmut11, w_mout11);

 144

 mux2to1B mutmux12(w_out12, w_muted12, w_selmut12, w_mout12);

 mux2to1B mutmux13(w_out13, w_muted13, w_selmut13, w_mout13);

 mux2to1B mutmux14(w_out14, w_muted14, w_selmut14, w_mout14);

 mux2to1B mutmux15(w_out15, w_muted15, w_selmut15, w_mout15);

 defparam cu0.n=wid_TT;

 cross_unit cu0(r_m0, r_m1, crosscode, CLK, w_out0, w_out1, w_out2,
w_out3);

 defparam cu1.n=wid_TT;

 cross_unit cu1(r_m2, r_m3, crosscode, CLK, w_out4, w_out5, w_out6,
w_out7);

 defparam cu2.n=wid_TT;

 cross_unit cu2(r_m4, r_m5, crosscode, CLK, w_out8, w_out9, w_out10,
w_out11);

 defparam cu3.n=wid_TT;

 cross_unit cu3(r_m6, r_m7, crosscode, CLK, w_out12, w_out13, w_out14,
w_out15);

 always @(posedge CLK)

 begin

 r_m0 <= w_m0;

 r_m1 <= w_m1;

 r_m2 <= w_m2;

 r_m3 <= w_m3;

 r_m4 <= w_m4;

 r_m5 <= w_m5;

 r_m6 <= w_m6;

 r_m7 <= w_m7;

 r_mout0 <= w_mout0;

 r_mout1 <= w_mout1;

 r_mout2 <= w_mout2;

 r_mout3 <= w_mout3;

 r_mout4 <= w_mout4;

 r_mout5 <= w_mout5;

 r_mout6 <= w_mout6;

 r_mout7 <= w_mout7;

 r_mout8 <= w_mout8;

 r_mout9 <= w_mout9;

 r_mout10 <= w_mout10;

 r_mout11 <= w_mout11;

 r_mout12 <= w_mout12;

 145

 r_mout13 <= w_mout13;

 r_mout14 <= w_mout14;

 r_mout15 <= w_mout15;

 end

 always @(*)

 begin

 w_selmut0 <= (0==w_mutout[3:0])?1:0;

 w_selmut1 <= (1==w_mutout[3:0])?1:0;

 w_selmut2 <= (2==w_mutout[3:0])?1:0;

 w_selmut3 <= (3==w_mutout[3:0])?1:0;

 w_selmut4 <= (4==w_mutout[3:0])?1:0;

 w_selmut5 <= (5==w_mutout[3:0])?1:0;

 w_selmut6 <= (6==w_mutout[3:0])?1:0;

 w_selmut7 <= (7==w_mutout[3:0])?1:0;

 w_selmut8 <= (8==w_mutout[3:0])?1:0;

 w_selmut9 <= (9==w_mutout[3:0])?1:0;

 w_selmut10 <= (10==w_mutout[3:0])?1:0;

 w_selmut11 <= (11==w_mutout[3:0])?1:0;

 w_selmut12 <= (12==w_mutout[3:0])?1:0;

 w_selmut13 <= (13==w_mutout[3:0])?1:0;

 w_selmut14 <= (14==w_mutout[3:0])?1:0;

 w_selmut15 <= (15==w_mutout[3:0])?1:0;

 w_muted0 = w_out0 ^ w_mutout[17:4];

 w_muted1 = w_out1 ^ w_mutout[17:4];

 w_muted2 = w_out2 ^ w_mutout[17:4];

 w_muted3 = w_out3 ^ w_mutout[17:4];

 w_muted4 = w_out4 ^ w_mutout[17:4];

 w_muted5 = w_out5 ^ w_mutout[17:4];

 w_muted6 = w_out6 ^ w_mutout[17:4];

 w_muted7 = w_out7 ^ w_mutout[17:4];

 w_muted8 = w_out8 ^ w_mutout[17:4];

 w_muted9 = w_out9 ^ w_mutout[17:4];

 w_muted10 = w_out10 ^ w_mutout[17:4];

 w_muted11 = w_out11 ^ w_mutout[17:4];

 w_muted12 = w_out12 ^ w_mutout[17:4];

 w_muted13 = w_out13 ^ w_mutout[17:4];

 w_muted14 = w_out14 ^ w_mutout[17:4];

 w_muted15 = w_out15 ^ w_mutout[17:4];

 end

endmodule

 146

module swapperN(a, b, lt, aprime, bprime);

 parameter n=16;

 input [n-1:0] a, b;

 input lt;

 output [n-1:0] aprime, bprime;

 reg [n-1:0] aprime, bprime;

 always @(a, b, lt)

 begin

 if (lt)

 begin

 aprime <=b;

 bprime <=a;

 end

 else

 begin

 aprime <=a;

 bprime <=b;

 end

 end

endmodule

module dff_NB14(d, CLK, q);

 parameter n=14;

 input [n-1:0] d;

 input CLK;

 output [n-1:0] q;

 reg [n-1:0] q;

 always @(posedge CLK)

 q <= d;

endmodule

module dff_NB8(d, CLK, q);

 parameter n=8;

 input [n-1:0] d;

 input CLK;

 output [n-1:0] q;

 reg [n-1:0] q;

 always @(posedge CLK)

 q <= d;

endmodule

 147

module dff_N(d, CLK, q);

 parameter n=16;

 input [n-1:0] d;

 input CLK;

 output [n-1:0] q;

 reg [n-1:0] q;

 always @(posedge CLK)

 q <= d;

endmodule

module compare_lt(a, b, lt);

 parameter n=8;

 input [n-1:0] a, b;

 output lt;

 reg lt;

 always @(a,b)

 if (a<b)

 lt<=1'b1;

 else

 lt<=1'b0;

endmodule

module sort2(a, b, aprime, bprime);

 //Configuration of inputs {8bit index, 8bit fitness value}

 //parameter n=16;

 //parameter k=8;

 parameter wid_TT=14;

 parameter wid_fit=8;

 input [wid_TT+wid_fit-1:0] a, b;

 output [wid_TT+wid_fit-1:0] aprime, bprime;

 wire [wid_TT+wid_fit-1:0] aprime, bprime;

 wire lt;

 compare_lt comp(a[wid_fit-1:0], b[wid_fit-1:0], lt);

 defparam s.n=wid_TT+wid_fit;

 swapperN s(a, b, lt, aprime, bprime);

endmodule

module sort4(a,

 148

 b,

 c,

 CLK,

 d,

 aprime,

 bprime,

 cprime,

 dprime);

 parameter wid_TT=14;

 parameter wid_fit=8;

 input [wid_TT+wid_fit-1:0] a;

 input [wid_TT+wid_fit-1:0] b;

 input [wid_TT+wid_fit-1:0] c;

 input CLK;

 input [wid_TT+wid_fit-1:0] d;

 output [wid_TT+wid_fit-1:0] aprime;

 output [wid_TT+wid_fit-1:0] bprime;

 output [wid_TT+wid_fit-1:0] cprime;

 output [wid_TT+wid_fit-1:0] dprime;

 wire [wid_TT+wid_fit-1:0] XLXN_1;

 wire [wid_TT+wid_fit-1:0] XLXN_2;

 wire [wid_TT+wid_fit-1:0] XLXN_3;

 wire [wid_TT+wid_fit-1:0] XLXN_4;

 wire [wid_TT+wid_fit-1:0] XLXN_9;

 wire [wid_TT+wid_fit-1:0] XLXN_10;

 wire [wid_TT+wid_fit-1:0] XLXN_11;

 wire [wid_TT+wid_fit-1:0] XLXN_12;

 wire [wid_TT+wid_fit-1:0] XLXN_13;

 wire [wid_TT+wid_fit-1:0] XLXN_14;

 wire [wid_TT+wid_fit-1:0] XLXN_15;

 wire [wid_TT+wid_fit-1:0] XLXN_16;

 wire [wid_TT+wid_fit-1:0] XLXN_36;

 wire [wid_TT+wid_fit-1:0] XLXN_37;

 wire [wid_TT+wid_fit-1:0] XLXN_40;

 wire [wid_TT+wid_fit-1:0] XLXN_41;

 wire [wid_TT+wid_fit-1:0] XLXN_42;

 wire [wid_TT+wid_fit-1:0] XLXN_43;

 defparam XLXI_1.n=wid_TT+wid_fit;

 149

 dff_N XLXI_1 (.CLK(CLK),

 .d(XLXN_1[wid_TT+wid_fit-1:0]),

 .q(XLXN_9[wid_TT+wid_fit-1:0]));

 defparam XLXI_2.wid_TT=wid_TT;

 defparam XLXI_2.wid_fit=wid_fit;

 sort2 XLXI_2 (.a(a[wid_TT+wid_fit-1:0]),

 .b(b[wid_TT+wid_fit-1:0]),

 .aprime(XLXN_1[wid_TT+wid_fit-1:0]),

 .bprime(XLXN_2[wid_TT+wid_fit-1:0]));

 defparam XLXI_3.wid_TT=wid_TT;

 defparam XLXI_3.wid_fit=wid_fit;

 sort2 XLXI_3 (.a(c[wid_TT+wid_fit-1:0]),

 .b(d[wid_TT+wid_fit-1:0]),

 .aprime(XLXN_3[wid_TT+wid_fit-1:0]),

 .bprime(XLXN_4[wid_TT+wid_fit-1:0]));

 defparam XLXI_5.n=wid_TT+wid_fit;

 dff_N XLXI_5 (.CLK(CLK),

 .d(XLXN_2[wid_TT+wid_fit-1:0]),

 .q(XLXN_11[wid_TT+wid_fit-1:0]));

 defparam XLXI_6.n=wid_TT+wid_fit;

 dff_N XLXI_6 (.CLK(CLK),

 .d(XLXN_3[wid_TT+wid_fit-1:0]),

 .q(XLXN_10[wid_TT+wid_fit-1:0]));

 defparam XLXI_7.n=wid_TT+wid_fit;

 dff_N XLXI_7 (.CLK(CLK),

 .d(XLXN_4[wid_TT+wid_fit-1:0]),

 .q(XLXN_12[wid_TT+wid_fit-1:0]));

 defparam XLXI_8.wid_TT=wid_TT;

 defparam XLXI_8.wid_fit=wid_fit;

 sort2 XLXI_8 (.a(XLXN_9[wid_TT+wid_fit-1:0]),

 .b(XLXN_10[wid_TT+wid_fit-1:0]),

 .aprime(XLXN_13[wid_TT+wid_fit-1:0]),

 .bprime(XLXN_14[wid_TT+wid_fit-1:0]));

 defparam XLXI_9.wid_TT=wid_TT;

 defparam XLXI_9.wid_fit=wid_fit;

 150

 sort2 XLXI_9 (.a(XLXN_11[wid_TT+wid_fit-1:0]),

 .b(XLXN_12[wid_TT+wid_fit-1:0]),

 .aprime(XLXN_15[wid_TT+wid_fit-1:0]),

 .bprime(XLXN_16[wid_TT+wid_fit-1:0]));

 defparam XLXI_10.n=wid_TT+wid_fit;

 dff_N XLXI_10 (.CLK(CLK),

 .d(XLXN_13[wid_TT+wid_fit-1:0]),

 .q(XLXN_40[wid_TT+wid_fit-1:0]));

 defparam XLXI_11.n=wid_TT+wid_fit;

 dff_N XLXI_11 (.CLK(CLK),

 .d(XLXN_14[wid_TT+wid_fit-1:0]),

 .q(XLXN_36[wid_TT+wid_fit-1:0]));

 defparam XLXI_12.n=wid_TT+wid_fit;

 dff_N XLXI_12 (.CLK(CLK),

 .d(XLXN_15[wid_TT+wid_fit-1:0]),

 .q(XLXN_37[wid_TT+wid_fit-1:0]));

 defparam XLXI_13.n=wid_TT+wid_fit;

 dff_N XLXI_13 (.CLK(CLK),

 .d(XLXN_16[wid_TT+wid_fit-1:0]),

 .q(XLXN_43[wid_TT+wid_fit-1:0]));

 defparam XLXI_14.wid_TT=wid_TT;

 defparam XLXI_14.wid_fit=wid_fit;

 sort2 XLXI_14 (.a(XLXN_36[wid_TT+wid_fit-1:0]),

 .b(XLXN_37[wid_TT+wid_fit-1:0]),

 .aprime(XLXN_41[wid_TT+wid_fit-1:0]),

 .bprime(XLXN_42[wid_TT+wid_fit-1:0]));

 defparam XLXI_31.n=wid_TT+wid_fit;

 dff_N XLXI_31 (.CLK(CLK),

 .d(XLXN_40[wid_TT+wid_fit-1:0]),

 .q(aprime[wid_TT+wid_fit-1:0]));

 defparam XLXI_32.n=wid_TT+wid_fit;

 dff_N XLXI_32 (.CLK(CLK),

 .d(XLXN_41[wid_TT+wid_fit-1:0]),

 .q(bprime[wid_TT+wid_fit-1:0]));

 151

 defparam XLXI_33.n=wid_TT+wid_fit;

 dff_N XLXI_33 (.CLK(CLK),

 .d(XLXN_42[wid_TT+wid_fit-1:0]),

 .q(cprime[wid_TT+wid_fit-1:0]));

 defparam XLXI_34.n=wid_TT+wid_fit;

 dff_N XLXI_34 (.CLK(CLK),

 .d(XLXN_43[wid_TT+wid_fit-1:0]),

 .q(dprime[wid_TT+wid_fit-1:0]));

endmodule

module sort8(a,

 b,

 c,

 CLK,

 d,

 e,

 f,

 g,

 h,

 aprime,

 bprime,

 cprime,

 dprime,

 eprime,

 fprime,

 gprime,

 hprime);

 parameter wid_TT=14;

 parameter wid_fit=8;

 input [wid_TT+wid_fit-1:0] a;

 input [wid_TT+wid_fit-1:0] b;

 input [wid_TT+wid_fit-1:0] c;

 input CLK;

 input [wid_TT+wid_fit-1:0] d;

 input [wid_TT+wid_fit-1:0] e;

 input [wid_TT+wid_fit-1:0] f;

 input [wid_TT+wid_fit-1:0] g;

 input [wid_TT+wid_fit-1:0] h;

 output [wid_TT+wid_fit-1:0] aprime;

 152

 output [wid_TT+wid_fit-1:0] bprime;

 output [wid_TT+wid_fit-1:0] cprime;

 output [wid_TT+wid_fit-1:0] dprime;

 output [wid_TT+wid_fit-1:0] eprime;

 output [wid_TT+wid_fit-1:0] fprime;

 output [wid_TT+wid_fit-1:0] gprime;

 output [wid_TT+wid_fit-1:0] hprime;

 wire [wid_TT+wid_fit-1:0] XLXN_11;

 wire [wid_TT+wid_fit-1:0] XLXN_12;

 wire [wid_TT+wid_fit-1:0] XLXN_13;

 wire [wid_TT+wid_fit-1:0] XLXN_14;

 wire [wid_TT+wid_fit-1:0] XLXN_15;

 wire [wid_TT+wid_fit-1:0] XLXN_16;

 wire [wid_TT+wid_fit-1:0] XLXN_17;

 wire [wid_TT+wid_fit-1:0] XLXN_18;

 wire [wid_TT+wid_fit-1:0] XLXN_19;

 wire [wid_TT+wid_fit-1:0] XLXN_20;

 wire [wid_TT+wid_fit-1:0] XLXN_21;

 wire [wid_TT+wid_fit-1:0] XLXN_22;

 wire [wid_TT+wid_fit-1:0] XLXN_23;

 wire [wid_TT+wid_fit-1:0] XLXN_24;

 wire [wid_TT+wid_fit-1:0] XLXN_25;

 wire [wid_TT+wid_fit-1:0] XLXN_26;

 wire [wid_TT+wid_fit-1:0] XLXN_28;

 wire [wid_TT+wid_fit-1:0] XLXN_29;

 wire [wid_TT+wid_fit-1:0] XLXN_30;

 wire [wid_TT+wid_fit-1:0] XLXN_31;

 wire [wid_TT+wid_fit-1:0] XLXN_32;

 wire [wid_TT+wid_fit-1:0] XLXN_33;

 wire [wid_TT+wid_fit-1:0] XLXN_34;

 wire [wid_TT+wid_fit-1:0] XLXN_35;

 wire [wid_TT+wid_fit-1:0] XLXN_36;

 wire [wid_TT+wid_fit-1:0] XLXN_37;

 wire [wid_TT+wid_fit-1:0] XLXN_38;

 wire [wid_TT+wid_fit-1:0] XLXN_39;

 wire [wid_TT+wid_fit-1:0] XLXN_46;

 wire [wid_TT+wid_fit-1:0] XLXN_47;

 wire [wid_TT+wid_fit-1:0] XLXN_48;

 wire [wid_TT+wid_fit-1:0] XLXN_49;

 wire [wid_TT+wid_fit-1:0] XLXN_50;

 wire [wid_TT+wid_fit-1:0] XLXN_51;

 153

 wire [wid_TT+wid_fit-1:0] XLXN_60;

 wire [wid_TT+wid_fit-1:0] XLXN_61;

 wire [wid_TT+wid_fit-1:0] XLXN_62;

 wire [wid_TT+wid_fit-1:0] XLXN_63;

 wire [wid_TT+wid_fit-1:0] XLXN_64;

 wire [wid_TT+wid_fit-1:0] XLXN_65;

 wire [wid_TT+wid_fit-1:0] XLXN_66;

 wire [wid_TT+wid_fit-1:0] XLXN_67;

 defparam XLXI_1.wid_TT=wid_TT;

 defparam XLXI_1.wid_fit=wid_fit;

 sort4 XLXI_1 (.a(a[wid_TT+wid_fit-1:0]),

 .b(b[wid_TT+wid_fit-1:0]),

 .c(c[wid_TT+wid_fit-1:0]),

 .CLK(CLK),

 .d(d[wid_TT+wid_fit-1:0]),

 .aprime(XLXN_11[wid_TT+wid_fit-1:0]),

 .bprime(XLXN_15[wid_TT+wid_fit-1:0]),

 .cprime(XLXN_13[wid_TT+wid_fit-1:0]),

 .dprime(XLXN_17[wid_TT+wid_fit-1:0]));

 defparam XLXI_2.wid_TT=wid_TT;

 defparam XLXI_2.wid_fit=wid_fit;

 sort4 XLXI_2 (.a(e[wid_TT+wid_fit-1:0]),

 .b(f[wid_TT+wid_fit-1:0]),

 .c(g[wid_TT+wid_fit-1:0]),

 .CLK(CLK),

 .d(h[wid_TT+wid_fit-1:0]),

 .aprime(XLXN_12[wid_TT+wid_fit-1:0]),

 .bprime(XLXN_16[wid_TT+wid_fit-1:0]),

 .cprime(XLXN_14[wid_TT+wid_fit-1:0]),

 .dprime(XLXN_18[wid_TT+wid_fit-1:0]));

 defparam XLXI_3.wid_TT=wid_TT;

 defparam XLXI_3.wid_fit=wid_fit;

 sort2 XLXI_3 (.a(XLXN_11[wid_TT+wid_fit-1:0]),

 .b(XLXN_12[wid_TT+wid_fit-1:0]),

 .aprime(XLXN_19[wid_TT+wid_fit-1:0]),

 .bprime(XLXN_20[wid_TT+wid_fit-1:0]));

 defparam XLXI_4.wid_TT=wid_TT;

 defparam XLXI_4.wid_fit=wid_fit;

 154

 sort2 XLXI_4 (.a(XLXN_13[wid_TT+wid_fit-1:0]),

 .b(XLXN_14[wid_TT+wid_fit-1:0]),

 .aprime(XLXN_21[wid_TT+wid_fit-1:0]),

 .bprime(XLXN_22[wid_TT+wid_fit-1:0]));

 defparam XLXI_5.wid_TT=wid_TT;

 defparam XLXI_5.wid_fit=wid_fit;

 sort2 XLXI_5 (.a(XLXN_15[wid_TT+wid_fit-1:0]),

 .b(XLXN_16[wid_TT+wid_fit-1:0]),

 .aprime(XLXN_23[wid_TT+wid_fit-1:0]),

 .bprime(XLXN_24[wid_TT+wid_fit-1:0]));

 defparam XLXI_6.wid_TT=wid_TT;

 defparam XLXI_6.wid_fit=wid_fit;

 sort2 XLXI_6 (.a(XLXN_17[wid_TT+wid_fit-1:0]),

 .b(XLXN_18[wid_TT+wid_fit-1:0]),

 .aprime(XLXN_25[wid_TT+wid_fit-1:0]),

 .bprime(XLXN_26[wid_TT+wid_fit-1:0]));

 defparam XLXI_7.n=wid_TT+wid_fit;

 dff_N XLXI_7 (.CLK(CLK),

 .d(XLXN_19[wid_TT+wid_fit-1:0]),

 .q(XLXN_32[wid_TT+wid_fit-1:0]));

 defparam XLXI_8.n=wid_TT+wid_fit;

 dff_N XLXI_8 (.CLK(CLK),

 .d(XLXN_23[wid_TT+wid_fit-1:0]),

 .q(XLXN_33[wid_TT+wid_fit-1:0]));

 defparam XLXI_9.n=wid_TT+wid_fit;

 dff_N XLXI_9 (.CLK(CLK),

 .d(XLXN_21[wid_TT+wid_fit-1:0]),

 .q(XLXN_28[wid_TT+wid_fit-1:0]));

 defparam XLXI_10.n=wid_TT+wid_fit;

 dff_N XLXI_10 (.CLK(CLK),

 .d(XLXN_25[wid_TT+wid_fit-1:0]),

 .q(XLXN_30[wid_TT+wid_fit-1:0]));

 defparam XLXI_11.n=wid_TT+wid_fit;

 dff_N XLXI_11 (.CLK(CLK),

 .d(XLXN_20[wid_TT+wid_fit-1:0]),

 155

 .q(XLXN_29[wid_TT+wid_fit-1:0]));

 defparam XLXI_12.n=wid_TT+wid_fit;

 dff_N XLXI_12 (.CLK(CLK),

 .d(XLXN_24[wid_TT+wid_fit-1:0]),

 .q(XLXN_31[wid_TT+wid_fit-1:0]));

 defparam XLXI_13.n=wid_TT+wid_fit;

 dff_N XLXI_13 (.CLK(CLK),

 .d(XLXN_22[wid_TT+wid_fit-1:0]),

 .q(XLXN_38[wid_TT+wid_fit-1:0]));

 defparam XLXI_14.n=wid_TT+wid_fit;

 dff_N XLXI_14 (.CLK(CLK),

 .d(XLXN_26[wid_TT+wid_fit-1:0]),

 .q(XLXN_39[wid_TT+wid_fit-1:0]));

 defparam XLXI_23.wid_TT=wid_TT;

 defparam XLXI_23.wid_fit=wid_fit;

 sort2 XLXI_23 (.a(XLXN_28[wid_TT+wid_fit-1:0]),

 .b(XLXN_29[wid_TT+wid_fit-1:0]),

 .aprime(XLXN_34[wid_TT+wid_fit-1:0]),

 .bprime(XLXN_35[wid_TT+wid_fit-1:0]));

 defparam XLXI_24.wid_TT=wid_TT;

 defparam XLXI_24.wid_fit=wid_fit;

 sort2 XLXI_24 (.a(XLXN_30[wid_TT+wid_fit-1:0]),

 .b(XLXN_31[wid_TT+wid_fit-1:0]),

 .aprime(XLXN_36[wid_TT+wid_fit-1:0]),

 .bprime(XLXN_37[wid_TT+wid_fit-1:0]));

 defparam XLXI_25.n=wid_TT+wid_fit;

 dff_N XLXI_25 (.CLK(CLK),

 .d(XLXN_32[wid_TT+wid_fit-1:0]),

 .q(XLXN_60[wid_TT+wid_fit-1:0]));

 defparam XLXI_26.n=wid_TT+wid_fit;

 dff_N XLXI_26 (.CLK(CLK),

 .d(XLXN_33[wid_TT+wid_fit-1:0]),

 .q(XLXN_46[wid_TT+wid_fit-1:0]));

 defparam XLXI_27.n=wid_TT+wid_fit;

 156

 dff_N XLXI_27 (.CLK(CLK),

 .d(XLXN_34[wid_TT+wid_fit-1:0]),

 .q(XLXN_47[wid_TT+wid_fit-1:0]));

 defparam XLXI_29.n=wid_TT+wid_fit;

 dff_N XLXI_29 (.CLK(CLK),

 .d(XLXN_36[wid_TT+wid_fit-1:0]),

 .q(XLXN_48[wid_TT+wid_fit-1:0]));

 defparam XLXI_30.n=wid_TT+wid_fit;

 dff_N XLXI_30 (.CLK(CLK),

 .d(XLXN_35[wid_TT+wid_fit-1:0]),

 .q(XLXN_49[wid_TT+wid_fit-1:0]));

 defparam XLXI_31.n=wid_TT+wid_fit;

 dff_N XLXI_31 (.CLK(CLK),

 .d(XLXN_37[wid_TT+wid_fit-1:0]),

 .q(XLXN_50[wid_TT+wid_fit-1:0]));

 defparam XLXI_32.n=wid_TT+wid_fit;

 dff_N XLXI_32 (.CLK(CLK),

 .d(XLXN_38[wid_TT+wid_fit-1:0]),

 .q(XLXN_51[wid_TT+wid_fit-1:0]));

 defparam XLXI_33.n=wid_TT+wid_fit;

 dff_N XLXI_33 (.CLK(CLK),

 .d(XLXN_39[wid_TT+wid_fit-1:0]),

 .q(XLXN_67[wid_TT+wid_fit-1:0]));

 defparam XLXI_34.wid_TT=wid_TT;

 defparam XLXI_34.wid_fit=wid_fit;

 sort2 XLXI_34 (.a(XLXN_46[wid_TT+wid_fit-1:0]),

 .b(XLXN_47[wid_TT+wid_fit-1:0]),

 .aprime(XLXN_61[wid_TT+wid_fit-1:0]),

 .bprime(XLXN_62[wid_TT+wid_fit-1:0]));

 defparam XLXI_35.wid_TT=wid_TT;

 defparam XLXI_35.wid_fit=wid_fit;

 sort2 XLXI_35 (.a(XLXN_48[wid_TT+wid_fit-1:0]),

 .b(XLXN_49[wid_TT+wid_fit-1:0]),

 .aprime(XLXN_63[wid_TT+wid_fit-1:0]),

 .bprime(XLXN_64[wid_TT+wid_fit-1:0]));

 157

 defparam XLXI_36.wid_TT=wid_TT;

 defparam XLXI_36.wid_fit=wid_fit;

 sort2 XLXI_36 (.a(XLXN_50[wid_TT+wid_fit-1:0]),

 .b(XLXN_51[wid_TT+wid_fit-1:0]),

 .aprime(XLXN_65[wid_TT+wid_fit-1:0]),

 .bprime(XLXN_66[wid_TT+wid_fit-1:0]));

 defparam XLXI_45.n=wid_TT+wid_fit;

 dff_N XLXI_45 (.CLK(CLK),

 .d(XLXN_60[wid_TT+wid_fit-1:0]),

 .q(aprime[wid_TT+wid_fit-1:0]));

 defparam XLXI_46.n=wid_TT+wid_fit;

 dff_N XLXI_46 (.CLK(CLK),

 .d(XLXN_61[wid_TT+wid_fit-1:0]),

 .q(bprime[wid_TT+wid_fit-1:0]));

 defparam XLXI_47.n=wid_TT+wid_fit;

 dff_N XLXI_47 (.CLK(CLK),

 .d(XLXN_62[wid_TT+wid_fit-1:0]),

 .q(cprime[wid_TT+wid_fit-1:0]));

 defparam XLXI_48.n=wid_TT+wid_fit;

 dff_N XLXI_48 (.CLK(CLK),

 .d(XLXN_63[wid_TT+wid_fit-1:0]),

 .q(dprime[wid_TT+wid_fit-1:0]));

 defparam XLXI_49.n=wid_TT+wid_fit;

 dff_N XLXI_49 (.CLK(CLK),

 .d(XLXN_64[wid_TT+wid_fit-1:0]),

 .q(eprime[wid_TT+wid_fit-1:0]));

 defparam XLXI_50.n=wid_TT+wid_fit;

 dff_N XLXI_50 (.CLK(CLK),

 .d(XLXN_65[wid_TT+wid_fit-1:0]),

 .q(fprime[wid_TT+wid_fit-1:0]));

 defparam XLXI_51.n=wid_TT+wid_fit;

 dff_N XLXI_51 (.CLK(CLK),

 .d(XLXN_66[wid_TT+wid_fit-1:0]),

 .q(gprime[wid_TT+wid_fit-1:0]));

 158

 defparam XLXI_52.n=wid_TT+wid_fit;

 dff_N XLXI_52 (.CLK(CLK),

 .d(XLXN_67[wid_TT+wid_fit-1:0]),

 .q(hprime[wid_TT+wid_fit-1:0]));

endmodule

module sort(a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p,CLK, aprime, bprime,
cprime, dprime, eprime, fprime, gprime, hprime, iprime, jprime, kprime, lprime, mprime,
nprime, oprime, pprime);

 parameter wid_TT=14;

 parameter wid_fit=8;

 input [wid_TT+wid_fit-1:0] a;

 input [wid_TT+wid_fit-1:0] b;

 input [wid_TT+wid_fit-1:0] c;

 //input CLK;

 input [wid_TT+wid_fit-1:0] d;

 input [wid_TT+wid_fit-1:0] e;

 input [wid_TT+wid_fit-1:0] f;

 input [wid_TT+wid_fit-1:0] g;

 input [wid_TT+wid_fit-1:0] h;

 input [wid_TT+wid_fit-1:0] i;

 input [wid_TT+wid_fit-1:0] j;

 input [wid_TT+wid_fit-1:0] k;

 input [wid_TT+wid_fit-1:0] l;

 input [wid_TT+wid_fit-1:0] m;

 input [wid_TT+wid_fit-1:0] n;

 input [wid_TT+wid_fit-1:0] o;

 input [wid_TT+wid_fit-1:0] p;

 input CLK /* synthesis syn_noclockbuf=1 syn_maxfan=100000 */;

 output [wid_TT+wid_fit-1:0] aprime;

 output [wid_TT+wid_fit-1:0] bprime;

 output [wid_TT+wid_fit-1:0] cprime;

 output [wid_TT+wid_fit-1:0] dprime;

 output [wid_TT+wid_fit-1:0] eprime;

 output [wid_TT+wid_fit-1:0] fprime;

 output [wid_TT+wid_fit-1:0] gprime;

 output [wid_TT+wid_fit-1:0] hprime;

 output [wid_TT+wid_fit-1:0] iprime;

 output [wid_TT+wid_fit-1:0] jprime;

 159

 output [wid_TT+wid_fit-1:0] kprime;

 output [wid_TT+wid_fit-1:0] lprime;

 output [wid_TT+wid_fit-1:0] mprime;

 output [wid_TT+wid_fit-1:0] nprime;

 output [wid_TT+wid_fit-1:0] oprime;

 output [wid_TT+wid_fit-1:0] pprime;

 wire [wid_TT+wid_fit-1:0] XLXN_17;

 wire [wid_TT+wid_fit-1:0] XLXN_31;

 wire [wid_TT+wid_fit-1:0] XLXN_49;

 wire [wid_TT+wid_fit-1:0] XLXN_50;

 wire [wid_TT+wid_fit-1:0] XLXN_51;

 wire [wid_TT+wid_fit-1:0] XLXN_52;

 wire [wid_TT+wid_fit-1:0] XLXN_53;

 wire [wid_TT+wid_fit-1:0] XLXN_54;

 wire [wid_TT+wid_fit-1:0] XLXN_55;

 wire [wid_TT+wid_fit-1:0] XLXN_56;

 wire [wid_TT+wid_fit-1:0] XLXN_57;

 wire [wid_TT+wid_fit-1:0] XLXN_58;

 wire [wid_TT+wid_fit-1:0] XLXN_59;

 wire [wid_TT+wid_fit-1:0] XLXN_60;

 wire [wid_TT+wid_fit-1:0] XLXN_61;

 wire [wid_TT+wid_fit-1:0] XLXN_62;

 wire [wid_TT+wid_fit-1:0] XLXN_63;

 wire [wid_TT+wid_fit-1:0] XLXN_64;

 wire [wid_TT+wid_fit-1:0] XLXN_65;

 wire [wid_TT+wid_fit-1:0] XLXN_66;

 wire [wid_TT+wid_fit-1:0] XLXN_67;

 wire [wid_TT+wid_fit-1:0] XLXN_68;

 wire [wid_TT+wid_fit-1:0] XLXN_69;

 wire [wid_TT+wid_fit-1:0] XLXN_70;

 wire [wid_TT+wid_fit-1:0] XLXN_71;

 wire [wid_TT+wid_fit-1:0] XLXN_72;

 wire [wid_TT+wid_fit-1:0] XLXN_73;

 wire [wid_TT+wid_fit-1:0] XLXN_74;

 wire [wid_TT+wid_fit-1:0] XLXN_75;

 wire [wid_TT+wid_fit-1:0] XLXN_76;

 wire [wid_TT+wid_fit-1:0] XLXN_77;

 wire [wid_TT+wid_fit-1:0] XLXN_78;

 wire [wid_TT+wid_fit-1:0] XLXN_278;

 wire [wid_TT+wid_fit-1:0] XLXN_424;

 wire [wid_TT+wid_fit-1:0] XLXN_452;

 160

 wire [wid_TT+wid_fit-1:0] XLXN_453;

 wire [wid_TT+wid_fit-1:0] XLXN_454;

 wire [wid_TT+wid_fit-1:0] XLXN_455;

 wire [wid_TT+wid_fit-1:0] XLXN_456;

 wire [wid_TT+wid_fit-1:0] XLXN_457;

 wire [wid_TT+wid_fit-1:0] XLXN_458;

 wire [wid_TT+wid_fit-1:0] XLXN_459;

 wire [wid_TT+wid_fit-1:0] XLXN_460;

 wire [wid_TT+wid_fit-1:0] XLXN_461;

 wire [wid_TT+wid_fit-1:0] XLXN_462;

 wire [wid_TT+wid_fit-1:0] XLXN_463;

 wire [wid_TT+wid_fit-1:0] XLXN_464;

 wire [wid_TT+wid_fit-1:0] XLXN_465;

 wire [wid_TT+wid_fit-1:0] XLXN_466;

 wire [wid_TT+wid_fit-1:0] XLXN_467;

 wire [wid_TT+wid_fit-1:0] XLXN_468;

 wire [wid_TT+wid_fit-1:0] XLXN_469;

 wire [wid_TT+wid_fit-1:0] XLXN_470;

 wire [wid_TT+wid_fit-1:0] XLXN_471;

 wire [wid_TT+wid_fit-1:0] XLXN_472;

 wire [wid_TT+wid_fit-1:0] XLXN_473;

 wire [wid_TT+wid_fit-1:0] XLXN_474;

 wire [wid_TT+wid_fit-1:0] XLXN_475;

 wire [wid_TT+wid_fit-1:0] XLXN_476;

 wire [wid_TT+wid_fit-1:0] XLXN_477;

 wire [wid_TT+wid_fit-1:0] XLXN_478;

 wire [wid_TT+wid_fit-1:0] XLXN_479;

 wire [wid_TT+wid_fit-1:0] XLXN_480;

 wire [wid_TT+wid_fit-1:0] XLXN_481;

 wire [wid_TT+wid_fit-1:0] XLXN_482;

 wire [wid_TT+wid_fit-1:0] XLXN_483;

 wire [wid_TT+wid_fit-1:0] XLXN_484;

 wire [wid_TT+wid_fit-1:0] XLXN_485;

 wire [wid_TT+wid_fit-1:0] XLXN_486;

 wire [wid_TT+wid_fit-1:0] XLXN_487;

 wire [wid_TT+wid_fit-1:0] XLXN_488;

 wire [wid_TT+wid_fit-1:0] XLXN_489;

 wire [wid_TT+wid_fit-1:0] XLXN_490;

 wire [wid_TT+wid_fit-1:0] XLXN_491;

 wire [wid_TT+wid_fit-1:0] XLXN_492;

 wire [wid_TT+wid_fit-1:0] XLXN_493;

 wire [wid_TT+wid_fit-1:0] XLXN_494;

 161

 wire [wid_TT+wid_fit-1:0] XLXN_495;

 wire [wid_TT+wid_fit-1:0] XLXN_496;

 wire [wid_TT+wid_fit-1:0] XLXN_497;

 wire [wid_TT+wid_fit-1:0] XLXN_498;

 wire [wid_TT+wid_fit-1:0] XLXN_499;

 wire [wid_TT+wid_fit-1:0] XLXN_500;

 wire [wid_TT+wid_fit-1:0] XLXN_501;

 wire [wid_TT+wid_fit-1:0] XLXN_502;

 wire [wid_TT+wid_fit-1:0] XLXN_503;

 wire [wid_TT+wid_fit-1:0] XLXN_515;

 wire [wid_TT+wid_fit-1:0] XLXN_517;

 wire [wid_TT+wid_fit-1:0] XLXN_518;

 wire [wid_TT+wid_fit-1:0] XLXN_519;

 wire [wid_TT+wid_fit-1:0] XLXN_520;

 wire [wid_TT+wid_fit-1:0] XLXN_521;

 wire [wid_TT+wid_fit-1:0] XLXN_522;

 wire [wid_TT+wid_fit-1:0] XLXN_524;

 wire [wid_TT+wid_fit-1:0] XLXN_525;

 wire [wid_TT+wid_fit-1:0] XLXN_526;

 wire [wid_TT+wid_fit-1:0] XLXN_527;

 wire [wid_TT+wid_fit-1:0] XLXN_528;

 wire [wid_TT+wid_fit-1:0] XLXN_529;

 wire [wid_TT+wid_fit-1:0] XLXN_530;

 wire [wid_TT+wid_fit-1:0] XLXN_531;

 wire [wid_TT+wid_fit-1:0] XLXN_532;

 wire [wid_TT+wid_fit-1:0] XLXN_533;

 wire [wid_TT+wid_fit-1:0] XLXN_534;

 wire [wid_TT+wid_fit-1:0] XLXN_535;

 wire [wid_TT+wid_fit-1:0] XLXN_536;

 wire [wid_TT+wid_fit-1:0] XLXN_537;

 wire [wid_TT+wid_fit-1:0] XLXN_538;

 wire [wid_TT+wid_fit-1:0] XLXN_539;

 wire [wid_TT+wid_fit-1:0] XLXN_540;

 wire [wid_TT+wid_fit-1:0] XLXN_541;

 wire [wid_TT+wid_fit-1:0] XLXN_542;

 wire [wid_TT+wid_fit-1:0] XLXN_543;

 wire [wid_TT+wid_fit-1:0] XLXN_544;

 defparam XLXI_1.wid_TT=wid_TT;

 defparam XLXI_1.wid_fit=wid_fit;

 sort8 XLXI_1 (.a(a[wid_TT+wid_fit-1:0]),

 .b(b[wid_TT+wid_fit-1:0]),

 162

 .c(c[wid_TT+wid_fit-1:0]),

 .CLK(CLK),

 .d(d[wid_TT+wid_fit-1:0]),

 .e(e[wid_TT+wid_fit-1:0]),

 .f(f[wid_TT+wid_fit-1:0]),

 .g(g[wid_TT+wid_fit-1:0]),

 .h(h[wid_TT+wid_fit-1:0]),

 .aprime(XLXN_17[wid_TT+wid_fit-1:0]),

 .bprime(XLXN_51[wid_TT+wid_fit-1:0]),

 .cprime(XLXN_55[wid_TT+wid_fit-1:0]),

 .dprime(XLXN_59[wid_TT+wid_fit-1:0]),

 .eprime(XLXN_63[wid_TT+wid_fit-1:0]),

 .fprime(XLXN_67[wid_TT+wid_fit-1:0]),

 .gprime(XLXN_71[wid_TT+wid_fit-1:0]),

 .hprime(XLXN_75[wid_TT+wid_fit-1:0]));

 defparam XLXI_2.wid_TT=wid_TT;

 defparam XLXI_2.wid_fit=wid_fit;

 sort8 XLXI_2 (.a(i[wid_TT+wid_fit-1:0]),

 .b(j[wid_TT+wid_fit-1:0]),

 .c(k[wid_TT+wid_fit-1:0]),

 .CLK(CLK),

 .d(l[wid_TT+wid_fit-1:0]),

 .e(m[wid_TT+wid_fit-1:0]),

 .f(n[wid_TT+wid_fit-1:0]),

 .g(o[wid_TT+wid_fit-1:0]),

 .h(p[wid_TT+wid_fit-1:0]),

 .aprime(XLXN_31[wid_TT+wid_fit-1:0]),

 .bprime(XLXN_52[wid_TT+wid_fit-1:0]),

 .cprime(XLXN_56[wid_TT+wid_fit-1:0]),

 .dprime(XLXN_60[wid_TT+wid_fit-1:0]),

 .eprime(XLXN_64[wid_TT+wid_fit-1:0]),

 .fprime(XLXN_68[wid_TT+wid_fit-1:0]),

 .gprime(XLXN_72[wid_TT+wid_fit-1:0]),

 .hprime(XLXN_76[wid_TT+wid_fit-1:0]));

 defparam XLXI_3.wid_TT=wid_TT;

 defparam XLXI_3.wid_fit=wid_fit;

 sort2 XLXI_3 (.a(XLXN_17[wid_TT+wid_fit-1:0]),

 .b(XLXN_31[wid_TT+wid_fit-1:0]),

 .aprime(XLXN_49[wid_TT+wid_fit-1:0]),

 .bprime(XLXN_50[wid_TT+wid_fit-1:0]));

 163

 defparam XLXI_4.wid_TT=wid_TT;

 defparam XLXI_4.wid_fit=wid_fit;

 sort2 XLXI_4 (.a(XLXN_51[wid_TT+wid_fit-1:0]),

 .b(XLXN_52[wid_TT+wid_fit-1:0]),

 .aprime(XLXN_53[wid_TT+wid_fit-1:0]),

 .bprime(XLXN_54[wid_TT+wid_fit-1:0]));

 defparam XLXI_5.wid_TT=wid_TT;

 defparam XLXI_5.wid_fit=wid_fit;

 sort2 XLXI_5 (.a(XLXN_55[wid_TT+wid_fit-1:0]),

 .b(XLXN_56[wid_TT+wid_fit-1:0]),

 .aprime(XLXN_57[wid_TT+wid_fit-1:0]),

 .bprime(XLXN_58[wid_TT+wid_fit-1:0]));

 defparam XLXI_6.wid_TT=wid_TT;

 defparam XLXI_6.wid_fit=wid_fit;

 sort2 XLXI_6 (.a(XLXN_59[wid_TT+wid_fit-1:0]),

 .b(XLXN_60[wid_TT+wid_fit-1:0]),

 .aprime(XLXN_61[wid_TT+wid_fit-1:0]),

 .bprime(XLXN_62[wid_TT+wid_fit-1:0]));

 defparam XLXI_7.wid_TT=wid_TT;

 defparam XLXI_7.wid_fit=wid_fit;

 sort2 XLXI_7 (.a(XLXN_63[wid_TT+wid_fit-1:0]),

 .b(XLXN_64[wid_TT+wid_fit-1:0]),

 .aprime(XLXN_65[wid_TT+wid_fit-1:0]),

 .bprime(XLXN_66[wid_TT+wid_fit-1:0]));

 defparam XLXI_8.wid_TT=wid_TT;

 defparam XLXI_8.wid_fit=wid_fit;

 sort2 XLXI_8 (.a(XLXN_67[wid_TT+wid_fit-1:0]),

 .b(XLXN_68[wid_TT+wid_fit-1:0]),

 .aprime(XLXN_69[wid_TT+wid_fit-1:0]),

 .bprime(XLXN_70[wid_TT+wid_fit-1:0]));

 defparam XLXI_9.wid_TT=wid_TT;

 defparam XLXI_9.wid_fit=wid_fit;

 sort2 XLXI_9 (.a(XLXN_71[wid_TT+wid_fit-1:0]),

 .b(XLXN_72[wid_TT+wid_fit-1:0]),

 .aprime(XLXN_73[wid_TT+wid_fit-1:0]),

 .bprime(XLXN_74[wid_TT+wid_fit-1:0]));

 164

 defparam XLXI_10.wid_TT=wid_TT;

 defparam XLXI_10.wid_fit=wid_fit;

 sort2 XLXI_10 (.a(XLXN_75[wid_TT+wid_fit-1:0]),

 .b(XLXN_76[wid_TT+wid_fit-1:0]),

 .aprime(XLXN_77[wid_TT+wid_fit-1:0]),

 .bprime(XLXN_78[wid_TT+wid_fit-1:0]));

 defparam XLXI_27.n=wid_TT+wid_fit;

 dff_N XLXI_27 (.CLK(CLK),

 .d(XLXN_49[wid_TT+wid_fit-1:0]),

 .q(XLXN_452[wid_TT+wid_fit-1:0]));

 defparam XLXI_28.n=wid_TT+wid_fit;

 dff_N XLXI_28 (.CLK(CLK),

 .d(XLXN_53[wid_TT+wid_fit-1:0]),

 .q(XLXN_453[wid_TT+wid_fit-1:0]));

 defparam XLXI_29.n=wid_TT+wid_fit;

 dff_N XLXI_29 (.CLK(CLK),

 .d(XLXN_57[wid_TT+wid_fit-1:0]),

 .q(XLXN_454[wid_TT+wid_fit-1:0]));

 defparam XLXI_30.n=wid_TT+wid_fit;

 dff_N XLXI_30 (.CLK(CLK),

 .d(XLXN_61[wid_TT+wid_fit-1:0]),

 .q(XLXN_455[wid_TT+wid_fit-1:0]));

 defparam XLXI_31.n=wid_TT+wid_fit;

 dff_N XLXI_31 (.CLK(CLK),

 .d(XLXN_65[wid_TT+wid_fit-1:0]),

 .q(XLXN_460[wid_TT+wid_fit-1:0]));

 defparam XLXI_32.n=wid_TT+wid_fit;

 dff_N XLXI_32 (.CLK(CLK),

 .d(XLXN_69[wid_TT+wid_fit-1:0]),

 .q(XLXN_464[wid_TT+wid_fit-1:0]));

 defparam XLXI_33.n=wid_TT+wid_fit;

 dff_N XLXI_33 (.CLK(CLK),

 .d(XLXN_73[wid_TT+wid_fit-1:0]),

 .q(XLXN_468[wid_TT+wid_fit-1:0]));

 165

 defparam XLXI_34.n=wid_TT+wid_fit;

 dff_N XLXI_34 (.CLK(CLK),

 .d(XLXN_77[wid_TT+wid_fit-1:0]),

 .q(XLXN_472[wid_TT+wid_fit-1:0]));

 defparam XLXI_35.n=wid_TT+wid_fit;

 dff_N XLXI_35 (.CLK(CLK),

 .d(XLXN_50[wid_TT+wid_fit-1:0]),

 .q(XLXN_462[wid_TT+wid_fit-1:0]));

 defparam XLXI_36.n=wid_TT+wid_fit;

 dff_N XLXI_36 (.CLK(CLK),

 .d(XLXN_54[wid_TT+wid_fit-1:0]),

 .q(XLXN_466[wid_TT+wid_fit-1:0]));

 defparam XLXI_37.n=wid_TT+wid_fit;

 dff_N XLXI_37 (.CLK(CLK),

 .d(XLXN_58[wid_TT+wid_fit-1:0]),

 .q(XLXN_470[wid_TT+wid_fit-1:0]));

 defparam XLXI_38.n=wid_TT+wid_fit;

 dff_N XLXI_38 (.CLK(CLK),

 .d(XLXN_62[wid_TT+wid_fit-1:0]),

 .q(XLXN_473[wid_TT+wid_fit-1:0]));

 defparam XLXI_43.n=wid_TT+wid_fit;

 dff_N XLXI_43 (.CLK(CLK),

 .d(XLXN_66[wid_TT+wid_fit-1:0]),

 .q(XLXN_459[wid_TT+wid_fit-1:0]));

 defparam XLXI_44.n=wid_TT+wid_fit;

 dff_N XLXI_44 (.CLK(CLK),

 .d(XLXN_70[wid_TT+wid_fit-1:0]),

 .q(XLXN_458[wid_TT+wid_fit-1:0]));

 defparam XLXI_45.n=wid_TT+wid_fit;

 dff_N XLXI_45 (.CLK(CLK),

 .d(XLXN_74[wid_TT+wid_fit-1:0]),

 .q(XLXN_457[wid_TT+wid_fit-1:0]));

 defparam XLXI_46.n=wid_TT+wid_fit;

 166

 dff_N XLXI_46 (.CLK(CLK),

 .d(XLXN_78[wid_TT+wid_fit-1:0]),

 .q(XLXN_456[wid_TT+wid_fit-1:0]));

 defparam XLXI_55.n=wid_TT+wid_fit;

 dff_N XLXI_55 (.CLK(CLK),

 .d(XLXN_452[wid_TT+wid_fit-1:0]),

 .q(XLXN_476[wid_TT+wid_fit-1:0]));

 defparam XLXI_56.n=wid_TT+wid_fit;

 dff_N XLXI_56 (.CLK(CLK),

 .d(XLXN_453[wid_TT+wid_fit-1:0]),

 .q(XLXN_477[wid_TT+wid_fit-1:0]));

 defparam XLXI_57.n=wid_TT+wid_fit;

 dff_N XLXI_57 (.CLK(CLK),

 .d(XLXN_454[wid_TT+wid_fit-1:0]),

 .q(XLXN_480[wid_TT+wid_fit-1:0]));

 defparam XLXI_58.n=wid_TT+wid_fit;

 dff_N XLXI_58 (.CLK(CLK),

 .d(XLXN_455[wid_TT+wid_fit-1:0]),

 .q(XLXN_492[wid_TT+wid_fit-1:0]));

 defparam XLXI_59.n=wid_TT+wid_fit;

 dff_N XLXI_59 (.CLK(CLK),

 .d(XLXN_461[wid_TT+wid_fit-1:0]),

 .q(XLXN_482[wid_TT+wid_fit-1:0]));

 defparam XLXI_60.n=wid_TT+wid_fit;

 dff_N XLXI_60 (.CLK(CLK),

 .d(XLXN_465[wid_TT+wid_fit-1:0]),

 .q(XLXN_493[wid_TT+wid_fit-1:0]));

 defparam XLXI_61.n=wid_TT+wid_fit;

 dff_N XLXI_61 (.CLK(CLK),

 .d(XLXN_469[wid_TT+wid_fit-1:0]),

 .q(XLXN_496[wid_TT+wid_fit-1:0]));

 defparam XLXI_62.n=wid_TT+wid_fit;

 dff_N XLXI_62 (.CLK(CLK),

 .d(XLXN_475[wid_TT+wid_fit-1:0]),

 167

 .q(XLXN_502[wid_TT+wid_fit-1:0]));

 defparam XLXI_63.n=wid_TT+wid_fit;

 dff_N XLXI_63 (.CLK(CLK),

 .d(XLXN_463[wid_TT+wid_fit-1:0]),

 .q(XLXN_497[wid_TT+wid_fit-1:0]));

 defparam XLXI_64.n=wid_TT+wid_fit;

 dff_N XLXI_64 (.CLK(CLK),

 .d(XLXN_467[wid_TT+wid_fit-1:0]),

 .q(XLXN_503[wid_TT+wid_fit-1:0]));

 defparam XLXI_65.n=wid_TT+wid_fit;

 dff_N XLXI_65 (.CLK(CLK),

 .d(XLXN_471[wid_TT+wid_fit-1:0]),

 .q(XLXN_491[wid_TT+wid_fit-1:0]));

 defparam XLXI_66.n=wid_TT+wid_fit;

 dff_N XLXI_66 (.CLK(CLK),

 .d(XLXN_474[wid_TT+wid_fit-1:0]),

 .q(XLXN_487[wid_TT+wid_fit-1:0]));

 defparam XLXI_67.n=wid_TT+wid_fit;

 dff_N XLXI_67 (.CLK(CLK),

 .d(XLXN_459[wid_TT+wid_fit-1:0]),

 .q(XLXN_488[wid_TT+wid_fit-1:0]));

 defparam XLXI_68.n=wid_TT+wid_fit;

 dff_N XLXI_68 (.CLK(CLK),

 .d(XLXN_458[wid_TT+wid_fit-1:0]),

 .q(XLXN_484[wid_TT+wid_fit-1:0]));

 defparam XLXI_69.n=wid_TT+wid_fit;

 dff_N XLXI_69 (.CLK(CLK),

 .d(XLXN_457[wid_TT+wid_fit-1:0]),

 .q(XLXN_478[wid_TT+wid_fit-1:0]));

 defparam XLXI_70.n=wid_TT+wid_fit;

 dff_N XLXI_70 (.CLK(CLK),

 .d(XLXN_456[wid_TT+wid_fit-1:0]),

 .q(XLXN_479[wid_TT+wid_fit-1:0]));

 168

 defparam XLXI_145.n=wid_TT+wid_fit;

 dff_N XLXI_145 (.CLK(CLK),

 .d(XLXN_476[wid_TT+wid_fit-1:0]),

 .q(XLXN_278[wid_TT+wid_fit-1:0]));

 defparam XLXI_146.n=wid_TT+wid_fit;

 dff_N XLXI_146 (.CLK(CLK),

 .d(XLXN_477[wid_TT+wid_fit-1:0]),

 .q(XLXN_515[wid_TT+wid_fit-1:0]));

 defparam XLXI_147.n=wid_TT+wid_fit;

 dff_N XLXI_147 (.CLK(CLK),

 .d(XLXN_481[wid_TT+wid_fit-1:0]),

 .q(XLXN_517[wid_TT+wid_fit-1:0]));

 defparam XLXI_148.n=wid_TT+wid_fit;

 dff_N XLXI_148 (.CLK(CLK),

 .d(XLXN_494[wid_TT+wid_fit-1:0]),

 .q(XLXN_520[wid_TT+wid_fit-1:0]));

 defparam XLXI_149.n=wid_TT+wid_fit;

 dff_N XLXI_149 (.CLK(CLK),

 .d(XLXN_483[wid_TT+wid_fit-1:0]),

 .q(XLXN_521[wid_TT+wid_fit-1:0]));

 defparam XLXI_150.n=wid_TT+wid_fit;

 dff_N XLXI_150 (.CLK(CLK),

 .d(XLXN_498[wid_TT+wid_fit-1:0]),

 .q(XLXN_525[wid_TT+wid_fit-1:0]));

 defparam XLXI_151.n=wid_TT+wid_fit;

 dff_N XLXI_151 (.CLK(CLK),

 .d(XLXN_495[wid_TT+wid_fit-1:0]),

 .q(XLXN_526[wid_TT+wid_fit-1:0]));

 defparam XLXI_152.n=wid_TT+wid_fit;

 dff_N XLXI_152 (.CLK(CLK),

 .d(XLXN_500[wid_TT+wid_fit-1:0]),

 .q(XLXN_529[wid_TT+wid_fit-1:0]));

 defparam XLXI_153.n=wid_TT+wid_fit;

 dff_N XLXI_153 (.CLK(CLK),

 169

 .d(XLXN_499[wid_TT+wid_fit-1:0]),

 .q(XLXN_530[wid_TT+wid_fit-1:0]));

 defparam XLXI_154.n=wid_TT+wid_fit;

 dff_N XLXI_154 (.CLK(CLK),

 .d(XLXN_501[wid_TT+wid_fit-1:0]),

 .q(XLXN_533[wid_TT+wid_fit-1:0]));

 defparam XLXI_155.n=wid_TT+wid_fit;

 dff_N XLXI_155 (.CLK(CLK),

 .d(XLXN_490[wid_TT+wid_fit-1:0]),

 .q(XLXN_534[wid_TT+wid_fit-1:0]));

 defparam XLXI_156.n=wid_TT+wid_fit;

 dff_N XLXI_156 (.CLK(CLK),

 .d(XLXN_486[wid_TT+wid_fit-1:0]),

 .q(XLXN_537[wid_TT+wid_fit-1:0]));

 defparam XLXI_157.n=wid_TT+wid_fit;

 dff_N XLXI_157 (.CLK(CLK),

 .d(XLXN_489[wid_TT+wid_fit-1:0]),

 .q(XLXN_538[wid_TT+wid_fit-1:0]));

 defparam XLXI_158.n=wid_TT+wid_fit;

 dff_N XLXI_158 (.CLK(CLK),

 .d(XLXN_485[wid_TT+wid_fit-1:0]),

 .q(XLXN_544[wid_TT+wid_fit-1:0]));

 defparam XLXI_159.n=wid_TT+wid_fit;

 dff_N XLXI_159 (.CLK(CLK),

 .d(XLXN_478[wid_TT+wid_fit-1:0]),

 .q(XLXN_543[wid_TT+wid_fit-1:0]));

 defparam XLXI_160.n=wid_TT+wid_fit;

 dff_N XLXI_160 (.CLK(CLK),

 .d(XLXN_479[wid_TT+wid_fit-1:0]),

 .q(XLXN_424[wid_TT+wid_fit-1:0]));

 defparam XLXI_191.n=wid_TT+wid_fit;

 dff_N XLXI_191 (.CLK(CLK),

 .d(XLXN_278[wid_TT+wid_fit-1:0]),

 .q(aprime[wid_TT+wid_fit-1:0]));

 170

 defparam XLXI_192.n=wid_TT+wid_fit;

 dff_N XLXI_192 (.CLK(CLK),

 .d(XLXN_519[wid_TT+wid_fit-1:0]),

 .q(bprime[wid_TT+wid_fit-1:0]));

 defparam XLXI_193.n=wid_TT+wid_fit;

 dff_N XLXI_193 (.CLK(CLK),

 .d(XLXN_518[wid_TT+wid_fit-1:0]),

 .q(cprime[wid_TT+wid_fit-1:0]));

 defparam XLXI_194.n=wid_TT+wid_fit;

 dff_N XLXI_194 (.CLK(CLK),

 .d(XLXN_524[wid_TT+wid_fit-1:0]),

 .q(dprime[wid_TT+wid_fit-1:0]));

 defparam XLXI_195.n=wid_TT+wid_fit;

 dff_N XLXI_195 (.CLK(CLK),

 .d(XLXN_522[wid_TT+wid_fit-1:0]),

 .q(eprime[wid_TT+wid_fit-1:0]));

 defparam XLXI_196.n=wid_TT+wid_fit;

 dff_N XLXI_196 (.CLK(CLK),

 .d(XLXN_527[wid_TT+wid_fit-1:0]),

 .q(fprime[wid_TT+wid_fit-1:0]));

 defparam XLXI_197.n=wid_TT+wid_fit;

 dff_N XLXI_197 (.CLK(CLK),

 .d(XLXN_528[wid_TT+wid_fit-1:0]),

 .q(gprime[wid_TT+wid_fit-1:0]));

 defparam XLXI_198.n=wid_TT+wid_fit;

 dff_N XLXI_198 (.CLK(CLK),

 .d(XLXN_531[wid_TT+wid_fit-1:0]),

 .q(hprime[wid_TT+wid_fit-1:0]));

 defparam XLXI_199.n=wid_TT+wid_fit;

 dff_N XLXI_199 (.CLK(CLK),

 .d(XLXN_532[wid_TT+wid_fit-1:0]),

 .q(iprime[wid_TT+wid_fit-1:0]));

 defparam XLXI_200.n=wid_TT+wid_fit;

 171

 dff_N XLXI_200 (.CLK(CLK),

 .d(XLXN_535[wid_TT+wid_fit-1:0]),

 .q(jprime[wid_TT+wid_fit-1:0]));

 defparam XLXI_201.n=wid_TT+wid_fit;

 dff_N XLXI_201 (.CLK(CLK),

 .d(XLXN_536[wid_TT+wid_fit-1:0]),

 .q(kprime[wid_TT+wid_fit-1:0]));

 defparam XLXI_202.n=wid_TT+wid_fit;

 dff_N XLXI_202 (.CLK(CLK),

 .d(XLXN_539[wid_TT+wid_fit-1:0]),

 .q(lprime[wid_TT+wid_fit-1:0]));

 defparam XLXI_203.n=wid_TT+wid_fit;

 dff_N XLXI_203 (.CLK(CLK),

 .d(XLXN_540[wid_TT+wid_fit-1:0]),

 .q(mprime[wid_TT+wid_fit-1:0]));

 defparam XLXI_204.n=wid_TT+wid_fit;

 dff_N XLXI_204 (.CLK(CLK),

 .d(XLXN_541[wid_TT+wid_fit-1:0]),

 .q(nprime[wid_TT+wid_fit-1:0]));

 defparam XLXI_205.n=wid_TT+wid_fit;

 dff_N XLXI_205 (.CLK(CLK),

 .d(XLXN_542[wid_TT+wid_fit-1:0]),

 .q(oprime[wid_TT+wid_fit-1:0]));

 defparam XLXI_206.n=wid_TT+wid_fit;

 dff_N XLXI_206 (.CLK(CLK),

 .d(XLXN_424[wid_TT+wid_fit-1:0]),

 .q(pprime[wid_TT+wid_fit-1:0]));

 defparam XLXI_282.wid_TT=wid_TT;

 defparam XLXI_282.wid_fit=wid_fit;

 sort2 XLXI_282 (.a(XLXN_460[wid_TT+wid_fit-1:0]),

 .b(XLXN_462[wid_TT+wid_fit-1:0]),

 .aprime(XLXN_461[wid_TT+wid_fit-1:0]),

 .bprime(XLXN_463[wid_TT+wid_fit-1:0]));

 defparam XLXI_283.wid_TT=wid_TT;

 172

 defparam XLXI_283.wid_fit=wid_fit;

 sort2 XLXI_283 (.a(XLXN_464[wid_TT+wid_fit-1:0]),

 .b(XLXN_466[wid_TT+wid_fit-1:0]),

 .aprime(XLXN_465[wid_TT+wid_fit-1:0]),

 .bprime(XLXN_467[wid_TT+wid_fit-1:0]));

 defparam XLXI_284.wid_TT=wid_TT;

 defparam XLXI_284.wid_fit=wid_fit;

 sort2 XLXI_284 (.a(XLXN_468[wid_TT+wid_fit-1:0]),

 .b(XLXN_470[wid_TT+wid_fit-1:0]),

 .aprime(XLXN_469[wid_TT+wid_fit-1:0]),

 .bprime(XLXN_471[wid_TT+wid_fit-1:0]));

 defparam XLXI_285.wid_TT=wid_TT;

 defparam XLXI_285.wid_fit=wid_fit;

 sort2 XLXI_285 (.a(XLXN_472[wid_TT+wid_fit-1:0]),

 .b(XLXN_473[wid_TT+wid_fit-1:0]),

 .aprime(XLXN_475[wid_TT+wid_fit-1:0]),

 .bprime(XLXN_474[wid_TT+wid_fit-1:0]));

 defparam XLXI_286.wid_TT=wid_TT;

 defparam XLXI_286.wid_fit=wid_fit;

 sort2 XLXI_286 (.a(XLXN_480[wid_TT+wid_fit-1:0]),

 .b(XLXN_482[wid_TT+wid_fit-1:0]),

 .aprime(XLXN_481[wid_TT+wid_fit-1:0]),

 .bprime(XLXN_483[wid_TT+wid_fit-1:0]));

 defparam XLXI_287.wid_TT=wid_TT;

 defparam XLXI_287.wid_fit=wid_fit;

 sort2 XLXI_287 (.a(XLXN_492[wid_TT+wid_fit-1:0]),

 .b(XLXN_493[wid_TT+wid_fit-1:0]),

 .aprime(XLXN_494[wid_TT+wid_fit-1:0]),

 .bprime(XLXN_495[wid_TT+wid_fit-1:0]));

 defparam XLXI_288.wid_TT=wid_TT;

 defparam XLXI_288.wid_fit=wid_fit;

 sort2 XLXI_288 (.a(XLXN_496[wid_TT+wid_fit-1:0]),

 .b(XLXN_497[wid_TT+wid_fit-1:0]),

 .aprime(XLXN_498[wid_TT+wid_fit-1:0]),

 .bprime(XLXN_499[wid_TT+wid_fit-1:0]));

 defparam XLXI_289.wid_TT=wid_TT;

 173

 defparam XLXI_289.wid_fit=wid_fit;

 sort2 XLXI_289 (.a(XLXN_502[wid_TT+wid_fit-1:0]),

 .b(XLXN_503[wid_TT+wid_fit-1:0]),

 .aprime(XLXN_500[wid_TT+wid_fit-1:0]),

 .bprime(XLXN_501[wid_TT+wid_fit-1:0]));

 defparam XLXI_290.wid_TT=wid_TT;

 defparam XLXI_290.wid_fit=wid_fit;

 sort2 XLXI_290 (.a(XLXN_491[wid_TT+wid_fit-1:0]),

 .b(XLXN_488[wid_TT+wid_fit-1:0]),

 .aprime(XLXN_490[wid_TT+wid_fit-1:0]),

 .bprime(XLXN_489[wid_TT+wid_fit-1:0]));

 defparam XLXI_291.wid_TT=wid_TT;

 defparam XLXI_291.wid_fit=wid_fit;

 sort2 XLXI_291 (.a(XLXN_487[wid_TT+wid_fit-1:0]),

 .b(XLXN_484[wid_TT+wid_fit-1:0]),

 .aprime(XLXN_486[wid_TT+wid_fit-1:0]),

 .bprime(XLXN_485[wid_TT+wid_fit-1:0]));

 defparam XLXI_298.wid_TT=wid_TT;

 defparam XLXI_298.wid_fit=wid_fit;

 sort2 XLXI_298 (.a(XLXN_515[wid_TT+wid_fit-1:0]),

 .b(XLXN_517[wid_TT+wid_fit-1:0]),

 .aprime(XLXN_519[wid_TT+wid_fit-1:0]),

 .bprime(XLXN_518[wid_TT+wid_fit-1:0]));

 defparam XLXI_299.wid_TT=wid_TT;

 defparam XLXI_299.wid_fit=wid_fit;

 sort2 XLXI_299 (.a(XLXN_520[wid_TT+wid_fit-1:0]),

 .b(XLXN_521[wid_TT+wid_fit-1:0]),

 .aprime(XLXN_524[wid_TT+wid_fit-1:0]),

 .bprime(XLXN_522[wid_TT+wid_fit-1:0]));

 defparam XLXI_300.wid_TT=wid_TT;

 defparam XLXI_300.wid_fit=wid_fit;

 sort2 XLXI_300 (.a(XLXN_525[wid_TT+wid_fit-1:0]),

 .b(XLXN_526[wid_TT+wid_fit-1:0]),

 .aprime(XLXN_527[wid_TT+wid_fit-1:0]),

 .bprime(XLXN_528[wid_TT+wid_fit-1:0]));

 defparam XLXI_301.wid_TT=wid_TT;

 174

 defparam XLXI_301.wid_fit=wid_fit;

 sort2 XLXI_301 (.a(XLXN_529[wid_TT+wid_fit-1:0]),

 .b(XLXN_530[wid_TT+wid_fit-1:0]),

 .aprime(XLXN_531[wid_TT+wid_fit-1:0]),

 .bprime(XLXN_532[wid_TT+wid_fit-1:0]));

 defparam XLXI_302.wid_TT=wid_TT;

 defparam XLXI_302.wid_fit=wid_fit;

 sort2 XLXI_302 (.a(XLXN_533[wid_TT+wid_fit-1:0]),

 .b(XLXN_534[wid_TT+wid_fit-1:0]),

 .aprime(XLXN_535[wid_TT+wid_fit-1:0]),

 .bprime(XLXN_536[wid_TT+wid_fit-1:0]));

 defparam XLXI_303.wid_TT=wid_TT;

 defparam XLXI_303.wid_fit=wid_fit;

 sort2 XLXI_303 (.a(XLXN_537[wid_TT+wid_fit-1:0]),

 .b(XLXN_538[wid_TT+wid_fit-1:0]),

 .aprime(XLXN_539[wid_TT+wid_fit-1:0]),

 .bprime(XLXN_540[wid_TT+wid_fit-1:0]));

 defparam XLXI_304.wid_TT=wid_TT;

 defparam XLXI_304.wid_fit=wid_fit;

 sort2 XLXI_304 (.a(XLXN_544[wid_TT+wid_fit-1:0]),

 .b(XLXN_543[wid_TT+wid_fit-1:0]),

 .aprime(XLXN_541[wid_TT+wid_fit-1:0]),

 .bprime(XLXN_542[wid_TT+wid_fit-1:0]));

endmodule

module ga(rnd0, rnd1, rnd2, rnd3, rnd4, rnd5, rnd6, rnd7, rnd8, rnd9, rnd10,
rnd11, rnd12, rnd13, rnd14, rnd15, min_fit, crc_sigs, crosscode, CLR, VALID, ITER, CLK,
w_out0, w_out1, w_out2, w_out3, w_out4, w_out5, w_out6, w_out7, w_out8, w_out9, w_out10,
w_out11, w_out12, w_out13, w_out14, w_out15);

 parameter wid_TT=14;

 parameter wid_fit=8;

 input [13:0] rnd0, rnd1, rnd2, rnd3, rnd4, rnd5, rnd6, rnd7, rnd8, rnd9,
rnd10, rnd11, rnd12, rnd13, rnd14, rnd15;

 input [63:0] crc_sigs;

 input [13:0] crosscode;

 input [7:0] min_fit;

 input CLR, VALID, ITER;

 input CLK /* synthesis syn_noclockbuf=1 syn_maxfan=100000 */ ;

 175

 output [13:0] w_out0, w_out1, w_out2, w_out3, w_out4, w_out5, w_out6,
w_out7, w_out8, w_out9, w_out10, w_out11, w_out12, w_out13, w_out14, w_out15;

 wire [31:0] crc_adr;

 wire [31:0] wcrc_adr;

 wire [13:0] w_out0, w_out1, w_out2, w_out3, w_out4, w_out5, w_out6,
w_out7, w_out8, w_out9, w_out10, w_out11, w_out12, w_out13, w_out14, w_out15;

 wire [wid_TT+wid_fit-1:0] w_new0, w_new1, w_new2, w_new3, w_new4, w_new5,
w_new6, w_new7, w_new8, w_new9, w_new10, w_new11, w_new12, w_new13, w_new14, w_new15;

 wire [wid_TT+wid_fit-1:0] w_sort0, w_sort1, w_sort2, w_sort3, w_sort4,
w_sort5, w_sort6, w_sort7, w_sort8, w_sort9, w_sort10, w_sort11, w_sort12, w_sort13,
w_sort14, w_sort15;

 //crc_sigs has the format of 32:1 CRC input value, 0 control line

 //crc adr has the format of 8:1 adr lines, 0 control line

 //If the control line is 1, the ROMs select the CRC address

 CRC_calc crc(crc_sigs[32:1], wcrc_adr);

 defparam ff_crc.n=32;

 dff_eNB ff_crc(wcrc_adr, VALID&ITER, CLK, crc_adr);

 defparam ff_crc_ctrl.n=1;

 dff_eNB ff_crc_ctrl(crc_sigs[0], VALID&ITER, CLK, wcrc_ctrl);

 assign t1 = w_new0;

 assign t2 = min_fit;

 //strgen(prev0, prev1, prev2, prev3, prev4, prev5, prev6, prev7, prev8,
prev9, prev10, prev11, prev12, prev13, prev14, prev15, reset_val,

 // CLR, VALID, ITER, CLK,

 // r_next0, r_next1, r_next2, r_next3, r_next4,
r_next5, r_next6, r_next7, r_next8, r_next9, r_next10,r_next11, r_next12, r_next13,
r_next14, r_next15);

 strgen sg(rnd0, rnd1, rnd2, rnd3, rnd4, rnd5, rnd6, rnd7, rnd8, rnd9,
rnd10, rnd11, rnd12, rnd13, rnd14, rnd15,

 w_out0[13:0], w_out1[13:0], w_out2[13:0],
w_out3[13:0], w_out4[13:0], w_out5[13:0], w_out6[13:0], w_out7[13:0], w_out8[13:0],
w_out9[13:0], w_out10[13:0], w_out11[13:0], w_out12[13:0], w_out13[13:0], w_out14[13:0],
w_out15[13:0],

 min_fit, CLR, VALID, ITER, CLK,

 w_new0, w_new1, w_new2, w_new3, w_new4, w_new5, w_new6,
w_new7, w_new8, w_new9, w_new10, w_new11, w_new12, w_new13, w_new14, w_new15);

 defparam s.wid_TT=wid_TT;

 defparam s.wid_fit=wid_fit;

 176

 sort s(w_new0, w_new1, w_new2, w_new3, w_new4, w_new5, w_new6, w_new7,
w_new8, w_new9, w_new10, w_new11, w_new12, w_new13, w_new14, w_new15, CLK,

 w_sort0, w_sort1, w_sort2, w_sort3, w_sort4, w_sort5,
w_sort6, w_sort7, w_sort8, w_sort9, w_sort10, w_sort11, w_sort12, w_sort13, w_sort14,
w_sort15);

 defparam c.wid_TT=wid_TT;

 defparam c.wid_fit=wid_fit;

 crossmut c(w_sort0, w_sort1, w_sort2, w_sort3, w_sort4,

 w_sort5, w_sort6, w_sort7, w_sort8, w_sort9,

 w_sort10, w_sort11, w_sort12, w_sort13,

 w_sort14, w_sort15,

 {crc_adr[7:0], wcrc_ctrl}, crosscode, CLR, VALID,
ITER, CLK,

 w_out0[wid_TT-1:0], w_out1[wid_TT-1:0],
w_out2[wid_TT-1:0], w_out3[wid_TT-1:0], w_out4[wid_TT-1:0], w_out5[wid_TT-1:0],
w_out6[wid_TT-1:0], w_out7[wid_TT-1:0],

 w_out8[wid_TT-1:0], w_out9[wid_TT-1:0],
w_out10[wid_TT-1:0], w_out11[wid_TT-1:0], w_out12[wid_TT-1:0], w_out13[wid_TT-1:0],
w_out14[wid_TT-1:0], w_out15[wid_TT-1:0]);

endmodule

 177

LIST OF REFERENCES

[1] K. E. Batcher, “Sorting networks and their applications,” Spring Joint Computer
Conference, pp. 307–314, 1968.

[2] J. T. Butler, G. W. Dueck, S. N. Yanushkevich and V. P. Shmerko Discrete, “On
the number of generators for transeunt triangles,” Applied Mathematics 108, pp.
309–316, 2001.

[3] J. T. Butler and T. Sasao, “Logic functions for cryptography—A Tutorial,”
Proceedings of the Reed-Muller Workshop 2009, pp. 127–136, Naha, Okinawa,
Japan, May 23–24, 2009.

[4] D. A. Coley, An Introduction to Genetic Algorithms for Scientists and Engineers,
World Scientific Publishing Co. Pte. Ltd., River Edge, New Jersey, 1999.

[5] T.W. Cusick and P. Stanica, Cryptographic Boolean Functions and Applications,
Academic Press, San Diego, California, 2009.

[6] J. F. Dillon “A Survey of Bent Functions,” NSA Technical Journal Special Issue,
pp. 191–215, 1972.

[7] M. Hell, T. Johansson, A. Maximov,W. Meier, “The Grain family of stream
ciphers,” New Stream Cipher Designs - The eSTREAM Finalists, pp. 179–190,
Springer-Verlag, 2008.

[8] P. Langevin, “Classification of Boolean Quartics Forms in eight Variables,”
http://langevin.univ-tln.fr/project/quartics/, last accessed 31AUG09.

[9] M. Mitchell, An Introduction to Genetic Algorithms, The MIT Press, Cambridge,
Massachusetts, 1996.

[10] W. Meier and O. Staffelbach, “Nonlinearity criteria for cryptographic functions,”
Advances in Cryptology, Proc. Eurocrypt’89, LNCS 434, pp. 549–562, Springer-
Verlag, 1990.

[11] A. Perez, “Byte-wise CRC Calculations,” IEEE Micro, vol. 3, no. 3, pp. 40–50,
1983.

[12] B. Preneel, “Analysis and design of cryptographic has functions,” PhD. Thesis,
Katholieke Universiteit, Leuven, Belgium, 1993.

[13] O.S. Rothaus, “On “bent” functions,” J. Combin. Theory (A) 20, pp. 300–305,
1976.

 178

[14] C. Shannon, “Communication Theory of Secrecy Systems,” Bell System
Technical Journal, vol.28(4), pp. 656–715, 1949.

[15] SRC Computers, Inc., “SRC Carte™ C Programming Environment v2.2 Guide,”
SRC–007–18, Colorado Springs, Colorado, August 2006.

[16] SRC Computers, Inc., “SRC Training Course,” Colorado, Springs, Colorado,
2005.

[17] R. Sung, A. Sung, P. Chan, J. Mah, “Linear Feedback Shift Register”
http://www.ee.ualberta.ca/~elliott/ee552/studentAppNotes/1999f/Drivers_Ed/lfsr.
html, last accessed 31AUG09.

[18] V.P. Suprun, “Fixed polarity Reed-Muller expressions of symmetric Boolean
functions,” Proceedings of IFIP WG 10.5 Workshop on Application of the Reed-
Muller Expansions in Circuit Design, pp. 246–249, 1995.

[19] M. Vavouras, K. Papadimitriou and I. Papaefstathiou, “High-speed fpga-based
implementations of a geneticalgorithm,” Proceedings of the IEEE International
Symposium on Systems, Architectures, Modeling and Simulation, Samos, Greece,
July 2009.

[20] R. N. Williams, “A Painless Guide to CRC Error Detection Algorithms,”
http://www.cs.waikato.ac.nz/~312/crc.txt, last accessed 31AUG09.

 179

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
Ft. Belvoir, VA

2. Dudley Knox Library
Naval Postgraduate School
Monterey, CA

3. Dr. John G. Harkins
National Security Agency
Fort Meade, MD

4. Dr. David R. Podany
National Security Agency
Fort Meade, MD

5. Mr. David Caliga
SRC Computers
Colorado Springs, CO

6. Mr. Jon Huppenthal
SRC Computers
Colorado Springs, CO

7. Dr. Jeff Hammes
SRC Computers
Colorado Springs, CO

8. Dr. Thad Welch
Electrical and Computer Engineering Department
Boise State University
Boise, ID

9. Dr. Douglas Fouts

Naval Postgraduate School
Monterey, CA

10. Dr. Herschel Loomis
Naval Postgraduate School
Monterey, CA

 180

11. Mr. Kyprianos Papadimitriou
ECE Dept.
Technical University of Crete

12. Dr. Bret Michael

Naval Postgraduate School
Monterey, CA

13. Dr. Ted Huffmire

Naval Postgraduate School
Monterey, CA

14. Dr. Jon T. Butler

Naval Postgraduate School
 Monterey, CA

15. Dr. Pantelimon Stanica

Naval Postgraduate School
 Monterey, CA

16. Dr. Sherif Michael

Naval Postgraduate School
Monterey, CA

17. Mr. Apostolos Dollas

ECE Dept.
Technical University of Crete

